Tensorflow.js是Google开发的开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。
执行 f() 并计算 f() 的标量输出相对于 varList 提供的可训练变量列表的梯度。如果未提供列表,则默认为所有可训练变量。
用法:
Optimizer.computeGradients(f, varList?);
参数:
- f ( ( ) => tf.Scalar):要执行的函数及其输出用于计算关于变量的梯度。
- varLIst( tf.Variable[ ] ):用于计算梯度的可选变量列表。如果指定,则只有可训练变量是 varList 才会有关于 的梯度计算。默认为所有可训练变量。
返回值:{ value:tf.Scalar, grads:{ [ name:string ]:tf.Tensor } }
范例1:
Javascript
// Importing tensorflow
import * as tf from "@tensorflow/tfjs"
const xs = tf.tensor1d([3, 4, 5]);
const ys = tf.tensor1d([3.5, 4.7, 5.3]);
const x = tf.scalar(Math.random()).variable();
const y = tf.scalar(Math.random()).variable();
// Define a function f(x, y) = ( x^2 ) - y.
const f = x => (x.square()).sub(y);
const loss = (pred, label) =>
pred.sub(label).square().mean();
const learningRate = 0.05;
// Create adam optimizer
const optimizer =
tf.train.adam(learningRate);
// Train the model.
for (let i = 0; i < 6; i++) {
optimizer.computeGradients(() => loss(f(xs), ys));
}
// Make predictions.
console.log(
`x:${x.dataSync()}, y:${y.dataSync()}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
console.log(`x:${i}, pred:${pred}`);
});
输出:
x:0.38272422552108765, y:0.7651948928833008 x:0, pred:8.2348051071167 x:1, pred:15.2348051071167 x:2, pred:24.234806060791016
范例2:
Javascript
// Importing tensorflow
import * as tf from "@tensorflow/tfjs"
const xs = tf.tensor1d([0, 1, 2, 3]);
const ys = tf.tensor1d([1.3, 3.7, 12.4, 26.6]);
// Choosing random coefficients
const a = tf.scalar(Math.random()).variable();
const b = tf.scalar(Math.random()).variable();
const c = tf.scalar(Math.random()).variable();
// Defing function f = (a*x^2 + b*x + c)
const f = x => a.mul(x.mul(3)).add(b.square(x)).add(c);
const loss = (pred, label) => pred.sub(label).square().mean();
// Setting congigurations for our optimizer
const learningRate = 0.01;
const initialAccumulatorValue = 10;
// Create the Optimizer
const optimizer = tf.train.adagrad(learningRate,
initialAccumulatorValue);
// Train the model.
for (let i = 0; i < 5; i++) {
optimizer.computeGradients(() => loss(f(xs), ys));
}
// Make predictions.
console.log(`a:${a.dataSync()},
b:${b.dataSync()}, c:${c.dataSync()}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
console.log(`x:${i}, pred:${pred}`);
});
输出:
a:0.22211307287216187, b:0.2304522693157196, c:0.42621928453445435 x:0, pred:0.479327529668808 x:1, pred:1.1456668376922607 x:2, pred:1.8120059967041016 x:3, pred:2.4783451557159424
参考:https://js.tensorflow.org/api/latest/#tf.train.Optimizer.computeGradients
相关用法
- Tensorflow.js tf.Tensor.buffer()用法及代码示例
- Java String repeat()用法及代码示例
- Tensorflow.js tf.LayersModel.evaluate()用法及代码示例
- Tensorflow.js tf.data.Dataset.batch()用法及代码示例
- Tensorflow.js tf.Sequential.add()用法及代码示例
- p5.js Element class()用法及代码示例
注:本文由纯净天空筛选整理自satyam00so大神的英文原创作品 Tensorflow.js tf.train.Optimizer class .computeGradients() Method。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。