借助sympy.stats.GeneralizedMultivariateLogGamma()
方法,我们可以获得连续的联合随机变量,它代表了广义多元对数伽马分布。
用法:GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu)
参数:
1) Syms - list of symbols
2) Delta - a constant in range [0, 1]
3) V - positive real number
4) Lambda - a list of positive reals
5) mu - a list of positive real numbers.
返回:Return the continuous joint random variable.
范例1:
在这个例子中,我们可以通过使用sympy.stats.GeneralizedMultivariateLogGamma()
该方法可以得到代表广义多元对数伽马分布的连续联合随机变量。
# Import sympy and GeneralizedMultivariateLogGamma
from sympy.stats import density
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma
from sympy.stats.joint_rv import marginal_distribution
from sympy import symbols, S
v = 1
l, mu = [1, 1, 1], [1, 1, 1]
d = S.Half
y = symbols('y_1:4', positive = True)
# Using sympy.stats.GeneralizedMultivariateLogGamma() method
Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu)
gfg = density(Gd)(y[0], y[1], y[2])
pprint(gfg)
输出:
oo _____ \ ` \ y_1 y_2 y_3 \ -n (n + 1)*(y_1 + y_2 + y_3) - e - e - e \ 2 *e / --------------------------------------------------- / 3 / Gamma (n + 1) /____, n = 0 ---------------------------------------------------------- 2
范例2:
# Import sympy and GeneralizedMultivariateLogGamma
from sympy.stats import density
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma
from sympy.stats.joint_rv import marginal_distribution
from sympy import symbols, S
v = 1
l, mu = [1, 2, 3], [2, 5, 1]
d = S.One
y = symbols('y_1:4', positive = True)
# Using sympy.stats.GeneralizedMultivariateLogGamma() method
Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu)
gfg = density(Gd)(y[0], y[1], y[2])
pprint(gfg)
输出:
oo ______ \ ` \ 5*y_2 y_3 \ 2*y_1 e e \ (n + 1)*(2*y_1 + 5*y_2 + y_3) - e - ------ - ---- \ n -n - 1 2 3 / 10*0 *6 *e / --------------------------------------------------------------------- / 3 / Gamma (n + 1) /_____, n = 0
相关用法
- Python sympy.sin()用法及代码示例
- Python sympy.nT()用法及代码示例
- Python sympy.Add()用法及代码示例
- Python sympy RGS用法及代码示例
- Python sympy.ff()用法及代码示例
- Python sympy.tan()用法及代码示例
- Python sympy.apart()用法及代码示例
- Python sympy.nC()用法及代码示例
- Python sympy.nP()用法及代码示例
- Python sympy.Mul()用法及代码示例
- Python sympy.S()用法及代码示例
- Python sympy.rf()用法及代码示例
- Python sympy.eye()用法及代码示例
- Python sympy.csc()用法及代码示例
- Python sympy.Pow()用法及代码示例
- Python sympy.gcd()用法及代码示例
- Python sympy.cot()用法及代码示例
- Python sympy.sec()用法及代码示例
- Python sympy.cos()用法及代码示例
- Python sympy.ones()用法及代码示例
注:本文由纯净天空筛选整理自Jitender_1998大神的英文原创作品 Sympy stats.GeneralizedMultivariateLogGamma() in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。