step_pca()
创建配方步骤的规范,将数值变量转换为一个或多个主成分。
用法
step_pca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
threshold = NA,
options = list(),
res = NULL,
columns = NULL,
prefix = "PC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pca")
)
参数
- recipe
-
一个菜谱对象。该步骤将添加到此配方的操作序列中。
- ...
-
一个或多个选择器函数用于为此步骤选择变量。有关更多详细信息,请参阅
selections()
。 - role
-
对于此步骤创建的模型项,应为其分配什么分析角色?默认情况下,此步骤根据原始变量创建的新列将用作模型中的预测变量。
- trained
-
指示预处理数量是否已估计的逻辑。
- num_comp
-
保留作为新预测变量的组件数量。如果
num_comp
大于列数或可能组件的数量,则将使用较小的值。如果设置了num_comp = 0
,则不会进行任何转换,并且所选变量将保持不变,无论keep_original_cols
的值如何。 - threshold
-
组件应覆盖的总方差的一小部分。例如,
threshold = .75
意味着step_pca
应生成足够的组件来捕获变量中 75% 的变异性。注意:使用此参数将覆盖并重置为num_comp
指定的任何值。 - options
-
stats::prcomp()
默认方法的选项列表。参数默认设置为retx = FALSE
、center = FALSE
、scale. = FALSE
和tol = NULL
。请注意,参数x
不应在此处传递(或根本不传递)。 - res
-
一旦
prep()
训练了该预处理步骤,stats::prcomp.default()
对象就会存储在此处。 - columns
-
所选变量名称的字符串。该字段是一个占位符,一旦使用
prep()
就会被填充。 - prefix
-
生成的新变量的前缀字符串。请参阅下面的注释。
- keep_original_cols
-
将原始变量保留在输出中的逻辑。默认为
FALSE
。 - skip
-
一个合乎逻辑的。当
bake()
烘焙食谱时是否应该跳过此步骤?虽然所有操作都是在prep()
运行时烘焙的,但某些操作可能无法对新数据进行(例如处理结果变量)。使用skip = TRUE
时应小心,因为它可能会影响后续操作的计算。 - id
-
该步骤特有的字符串,用于标识它。
细节
主成分分析 (PCA) 是一组变量的转换,可产生一组新的人工特征或成分。这些组件旨在捕获原始变量中的最大信息量(即方差)。此外,这些组件在统计上彼此独立。这意味着它们可用于对抗数据集中的大量 inter-variables 相关性。
建议在运行 PCA 之前对变量进行标准化。在这里,每个变量将在 PCA 计算之前居中并缩放。可以使用 options
参数或使用 step_center()
和 step_scale()
进行更改。
参数 num_comp
控制将保留的组件数量(用于派生组件的原始变量将从数据中删除)。新组件的名称以 prefix
和一系列数字开头。变量名称用零填充。例如,如果 num_comp < 10
,它们的名称将为 PC1
- PC9
。如果是 num_comp = 101
,则名称将为 PC1
- PC101
。
或者,threshold
可用于确定捕获变量总方差的指定分数所需的分量数量。
整理
当您 tidy()
此步骤时,使用 type = "coef"
表示每个组件的变量加载,或使用 type = "variance"
表示每个组件所占的方差。
箱重
此步骤执行可以利用案例权重的无监督操作。因此,个案权重仅与频率权重一起使用。有关更多信息,请参阅 case_weights 中的文档和 tidymodels.org
中的示例。
也可以看看
其他多元变换步骤:step_classdist_shrunken()
, step_classdist()
, step_depth()
, step_geodist()
, step_ica()
, step_isomap()
, step_kpca_poly()
, step_kpca_rbf()
, step_kpca()
, step_mutate_at()
, step_nnmf_sparse()
, step_nnmf()
, step_pls()
, step_ratio()
, step_spatialsign()
例子
rec <- recipe(~., data = USArrests)
pca_trans <- rec %>%
step_normalize(all_numeric()) %>%
step_pca(all_numeric(), num_comp = 3)
pca_estimates <- prep(pca_trans, training = USArrests)
pca_data <- bake(pca_estimates, USArrests)
rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
plot(pca_data$PC1, pca_data$PC2,
xlim = rng, ylim = rng
)
with_thresh <- rec %>%
step_normalize(all_numeric()) %>%
step_pca(all_numeric(), threshold = .99)
with_thresh <- prep(with_thresh, training = USArrests)
bake(with_thresh, USArrests)
#> # A tibble: 50 × 4
#> PC1 PC2 PC3 PC4
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.976 -1.12 0.440 0.155
#> 2 -1.93 -1.06 -2.02 -0.434
#> 3 -1.75 0.738 -0.0542 -0.826
#> 4 0.140 -1.11 -0.113 -0.181
#> 5 -2.50 1.53 -0.593 -0.339
#> 6 -1.50 0.978 -1.08 0.00145
#> 7 1.34 1.08 0.637 -0.117
#> 8 -0.0472 0.322 0.711 -0.873
#> 9 -2.98 -0.0388 0.571 -0.0953
#> 10 -1.62 -1.27 0.339 1.07
#> # ℹ 40 more rows
tidy(pca_trans, number = 2)
#> # A tibble: 1 × 4
#> terms value component id
#> <chr> <dbl> <chr> <chr>
#> 1 all_numeric() NA NA pca_Esd0U
tidy(pca_estimates, number = 2)
#> # A tibble: 16 × 4
#> terms value component id
#> <chr> <dbl> <chr> <chr>
#> 1 Murder -0.536 PC1 pca_Esd0U
#> 2 Assault -0.583 PC1 pca_Esd0U
#> 3 UrbanPop -0.278 PC1 pca_Esd0U
#> 4 Rape -0.543 PC1 pca_Esd0U
#> 5 Murder -0.418 PC2 pca_Esd0U
#> 6 Assault -0.188 PC2 pca_Esd0U
#> 7 UrbanPop 0.873 PC2 pca_Esd0U
#> 8 Rape 0.167 PC2 pca_Esd0U
#> 9 Murder 0.341 PC3 pca_Esd0U
#> 10 Assault 0.268 PC3 pca_Esd0U
#> 11 UrbanPop 0.378 PC3 pca_Esd0U
#> 12 Rape -0.818 PC3 pca_Esd0U
#> 13 Murder 0.649 PC4 pca_Esd0U
#> 14 Assault -0.743 PC4 pca_Esd0U
#> 15 UrbanPop 0.134 PC4 pca_Esd0U
#> 16 Rape 0.0890 PC4 pca_Esd0U
相关用法
- R recipes step_poly_bernstein 广义伯恩斯坦多项式基
- R recipes step_pls 偏最小二乘特征提取
- R recipes step_profile 创建数据集的分析版本
- R recipes step_poly 正交多项式基函数
- R recipes step_percentile 百分位变换
- R recipes step_unknown 将缺失的类别分配给“未知”
- R recipes step_relu 应用(平滑)修正线性变换
- R recipes step_impute_knn 通过 k 最近邻进行插补
- R recipes step_impute_mean 使用平均值估算数值数据
- R recipes step_inverse 逆变换
- R recipes step_ratio 比率变量创建
- R recipes step_geodist 两个地点之间的距离
- R recipes step_nzv 近零方差滤波器
- R recipes step_nnmf 非负矩阵分解信号提取
- R recipes step_normalize 中心和比例数值数据
- R recipes step_depth 数据深度
- R recipes step_other 折叠一些分类级别
- R recipes step_harmonic 添加正弦和余弦项以进行谐波分析
- R recipes step_corr 高相关滤波器
- R recipes step_novel 新因子水平的简单赋值
- R recipes step_select 使用 dplyr 选择变量
- R recipes step_regex 检测正则表达式
- R recipes step_spline_b 基础样条
- R recipes step_window 移动窗口函数
- R recipes step_ica ICA 信号提取
注:本文由纯净天空筛选整理自Max Kuhn等大神的英文原创作品 PCA Signal Extraction。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。