step_isomap()
创建配方步骤的规范,该配方步骤使用多维缩放将数值数据转换为一个或多个新维度。
用法
step_isomap(
recipe,
...,
role = "predictor",
trained = FALSE,
num_terms = 5,
neighbors = 50,
options = list(.mute = c("message", "output")),
res = NULL,
columns = NULL,
prefix = "Isomap",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("isomap")
)
参数
- recipe
-
一个菜谱对象。该步骤将添加到此配方的操作序列中。
- ...
-
一个或多个选择器函数用于为此步骤选择变量。有关更多详细信息,请参阅
selections()
。 - role
-
对于此步骤创建的模型项,应为其分配什么分析角色?默认情况下,此步骤根据原始变量创建的新列将用作模型中的预测变量。
- trained
-
指示预处理数量是否已估计的逻辑。
- num_terms
-
保留作为新预测变量的等位图维度数。如果
num_terms
大于列数或可能的维度数,则将使用较小的值。 - neighbors
-
邻居的数量。
- options
-
dimRed::Isomap()
的选项列表。 - res
-
一旦
prep()
训练了该预处理步骤,dimRed::Isomap()
对象就会存储在此处。 - columns
-
所选变量名称的字符串。该字段是一个占位符,一旦使用
prep()
就会被填充。 - prefix
-
生成的新变量的前缀字符串。请参阅下面的注释。
- keep_original_cols
-
将原始变量保留在输出中的逻辑。默认为
FALSE
。 - skip
-
一个合乎逻辑的。当
bake()
烘焙食谱时是否应该跳过此步骤?虽然所有操作都是在prep()
运行时烘焙的,但某些操作可能无法对新数据进行(例如处理结果变量)。使用skip = TRUE
时应小心,因为它可能会影响后续操作的计算。 - id
-
该步骤特有的字符串,用于标识它。
细节
Isomap 是多维标度 (MDS) 的一种形式。 MDS 方法尝试找到一组缩减的维度,以便保留原始数据点之间的几何距离。此版本的 MDS 使用数据中的最近邻作为提高新维度对原始数据值的保真度的方法。
此步骤需要暗红色,频谱,图形, 和RANN包。如果未安装,该步骤将停止并显示有关安装这些软件包的注释。
建议在运行 Isomap 之前对变量进行居中和缩放(step_center
和 step_scale
可用于此目的)。
参数 num_terms
控制将保留的组件数量(用于派生组件的原始变量将从数据中删除)。新组件的名称以 prefix
和一系列数字开头。变量名称用零填充。例如,如果 num_terms < 10
,它们的名称将为 Isomap1
- Isomap9
。如果是 num_terms = 101
,则名称将为 Isomap001
- Isomap101
。
整理
当您tidy()
此步骤时,将返回带有terms
列(选择的选择器或变量)的tibble。
参考
De Silva, V. 和 Tenenbaum, J. B. (2003)。非线性降维中的全局方法与局部方法。神经信息处理系统的进展。 721-728。
暗红色,降维框架,https://github.com/gdkrmr
也可以看看
其他多元变换步骤:step_classdist_shrunken()
, step_classdist()
, step_depth()
, step_geodist()
, step_ica()
, step_kpca_poly()
, step_kpca_rbf()
, step_kpca()
, step_mutate_at()
, step_nnmf_sparse()
, step_nnmf()
, step_pca()
, step_pls()
, step_ratio()
, step_spatialsign()
例子
if (FALSE) {
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr
)
im_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_isomap(all_numeric_predictors(), neighbors = 100, num_terms = 2)
im_estimates <- prep(im_trans, training = biomass_tr)
im_te <- bake(im_estimates, biomass_te)
rng <- extendrange(c(im_te$Isomap1, im_te$Isomap2))
plot(im_te$Isomap1, im_te$Isomap2,
xlim = rng, ylim = rng
)
tidy(im_trans, number = 3)
tidy(im_estimates, number = 3)
}
相关用法
- R recipes step_impute_knn 通过 k 最近邻进行插补
- R recipes step_impute_mean 使用平均值估算数值数据
- R recipes step_inverse 逆变换
- R recipes step_ica ICA 信号提取
- R recipes step_indicate_na 创建缺失数据列指示器
- R recipes step_integer 将值转换为预定义的整数
- R recipes step_impute_roll 使用滚动窗口统计估算数值数据
- R recipes step_impute_mode 使用最常见的值估算名义数据
- R recipes step_intercept 添加截距(或常数)列
- R recipes step_impute_lower 估算低于测量阈值的数值数据
- R recipes step_impute_bag 通过袋装树进行插补
- R recipes step_interact 创建交互变量
- R recipes step_invlogit 逆 Logit 变换
- R recipes step_impute_median 使用中位数估算数值数据
- R recipes step_impute_linear 通过线性模型估算数值变量
- R recipes step_unknown 将缺失的类别分配给“未知”
- R recipes step_relu 应用(平滑)修正线性变换
- R recipes step_poly_bernstein 广义伯恩斯坦多项式基
- R recipes step_pls 偏最小二乘特征提取
- R recipes step_ratio 比率变量创建
- R recipes step_geodist 两个地点之间的距离
- R recipes step_nzv 近零方差滤波器
- R recipes step_nnmf 非负矩阵分解信号提取
- R recipes step_normalize 中心和比例数值数据
- R recipes step_depth 数据深度
注:本文由纯净天空筛选整理自Max Kuhn等大神的英文原创作品 Isomap Embedding。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。