当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R haven labelled 创建一个标记向量。


带标签向量是其他统计环境中的常见数据结构,允许您将文本标签分配给特定值。此类可以将此类标记向量导入到 R 中,而不会损失保真度。这个类提供了一些方法,因为我希望您在导入后很快就会强制使用标准 R 类(例如 factor() )。

用法

labelled(x = double(), labels = NULL, label = NULL)

is.labelled(x)

参数

x

要标记的向量。必须是数字(整数或双精度)或字符。

labels

命名向量或 NULL 。该向量的类型应与 x 相同。与因子不同,标签不需要详尽无遗:只可以标记一小部分值。

label

向量的简短、人类可读的说明。

例子

s1 <- labelled(c("M", "M", "F"), c(Male = "M", Female = "F"))
s2 <- labelled(c(1, 1, 2), c(Male = 1, Female = 2))
s3 <- labelled(
  c(1, 1, 2),
  c(Male = 1, Female = 2),
  label = "Assigned sex at birth"
)

# Unfortunately it's not possible to make as.factor work for labelled objects
# so instead use as_factor. This works for all types of labelled vectors.
as_factor(s1)
#> [1] Male   Male   Female
#> Levels: Female Male
as_factor(s1, levels = "values")
#> [1] M M F
#> Levels: M F
as_factor(s2)
#> [1] Male   Male   Female
#> Levels: Male Female

# Other statistical software supports multiple types of missing values
s3 <- labelled(
  c("M", "M", "F", "X", "N/A"),
  c(Male = "M", Female = "F", Refused = "X", "Not applicable" = "N/A")
)
s3
#> <labelled<character>[5]>
#> [1] M   M   F   X   N/A
#> 
#> Labels:
#>  value          label
#>      M           Male
#>      F         Female
#>      X        Refused
#>    N/A Not applicable
as_factor(s3)
#> [1] Male           Male           Female         Refused       
#> [5] Not applicable
#> Levels: Female Male Not applicable Refused

# Often when you have a partially labelled numeric vector, labelled values
# are special types of missing. Use zap_labels to replace labels with missing
# values
x <- labelled(c(1, 2, 1, 2, 10, 9), c(Unknown = 9, Refused = 10))
zap_labels(x)
#> [1]  1  2  1  2 10  9
源代码:R/labelled.R

相关用法


注:本文由纯净天空筛选整理自Hadley Wickham等大神的英文原创作品 Create a labelled vector.。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。