Bessel
位于 base
包(package)。 说明
第一类和第二类整数阶和小数阶贝塞尔函数 和 以及修正贝塞尔函数(第一类和第三类) 和 。
用法
besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
参数
x |
数字, 。 |
nu |
数字;相应贝塞尔函数的阶数(可能是分数和负数)。 |
expon.scaled |
逻辑性;如果是 |
细节
如果返回 expon.scaled = TRUE
、 或 。
对于 besselK
除外,它在 nu
中是对称的。 ,应用 Abramowitz & Stegun 的公式 9.1.2 和 9.6.2(这可能不是最佳的),但
当前的算法将针对大型参数的准确性损失发出警告。在某些情况下,这些警告被夸大了,而精确度却是完美的。对于大型 nu
,比如数百万个,当前的算法很少有用。
值
具有相应贝塞尔函数的(缩放,如果 expon.scaled = TRUE
)值的数值向量。
结果的长度是参数长度中的最大值。所有参数都会循环到该长度。
例子
require(graphics)
nus <- c(0:5, 10, 20)
x <- seq(0, 4, length.out = 501)
plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)
legend(0, 6, legend = paste("nu=", nus), col = nus + 2, lwd = 1)
x <- seq(0, 40, length.out = 801); yl <- c(-.5, 1)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
abline(h=0, v=0, lty=3)
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)
legend("topright", legend = paste("nu=", nus), col = nus + 2, lwd = 1, bty="n")
## Negative nu's --------------------------------------------------
xx <- 2:7
nu <- seq(-10, 9, length.out = 2001)
## --- I() --- --- --- ---
matplot(nu, t(outer(xx, nu, besselI)), type = "l", ylim = c(-50, 200),
main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),
xlab = expression(nu))
abline(v = 0, col = "light gray", lty = 3)
legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=1:5)
## --- J() --- --- --- ---
bJ <- t(outer(xx, nu, besselJ))
matplot(nu, bJ, type = "l", ylim = c(-500, 200),
xlab = quote(nu), ylab = quote(J[nu](x)),
main = expression(paste("Bessel ", J[nu](x), " for fixed ", x)))
abline(v = 0, col = "light gray", lty = 3)
legend("topright", legend = paste("x=", xx), col=seq(xx), lty=1:5)
## ZOOM into right part:
matplot(nu[nu > -2], bJ[nu > -2,], type = "l",
xlab = quote(nu), ylab = quote(J[nu](x)),
main = expression(paste("Bessel ", J[nu](x), " for fixed ", x)))
abline(h=0, v = 0, col = "gray60", lty = 3)
legend("topright", legend = paste("x=", xx), col=seq(xx), lty=1:5)
##--------------- x --> 0 -----------------------------
x0 <- 2^seq(-16, 5, length.out=256)
plot(range(x0), c(1e-40, 1), log = "xy", xlab = "x", ylab = "", type = "n",
main = "Bessel Functions J_nu(x) near 0\n log - log scale") ; axis(2, at=1)
for(nu in sort(c(nus, nus+0.5)))
lines(x0, besselJ(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%1 > 0))
legend("right", legend = paste("nu=", paste(nus, nus+0.5, sep=", ")),
col = nus + 2, lwd = 1, bty="n")
x0 <- 2^seq(-10, 8, length.out=256)
plot(range(x0), 10^c(-100, 80), log = "xy", xlab = "x", ylab = "", type = "n",
main = "Bessel Functions K_nu(x) near 0\n log - log scale") ; axis(2, at=1)
for(nu in sort(c(nus, nus+0.5)))
lines(x0, besselK(x0, nu = nu), col = nu + 2, lty= 1+ (nu%%1 > 0))
legend("topright", legend = paste("nu=", paste(nus, nus + 0.5, sep = ", ")),
col = nus + 2, lwd = 1, bty="n")
x <- x[x > 0]
plot(x, x, ylim = c(1e-18, 1e11), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)"); axis(2, at=1)
for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)
legend(0, 1e-5, legend=paste("nu=", nus), col = nus + 2, lwd = 1)
yl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y_nu(x)")
for(nu in nus){
xx <- x[x > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)
}
legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)
## negative nu in bessel_Y -- was bogus for a long time
curve(besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = "")
for(nu in c(seq(-0.2, -2, by = -0.1)))
curve(besselY(x, nu), add = TRUE)
title(expression(besselY(x, nu) * " " *
{nu == list(-0.1, -0.2, ..., -2)}))
作者
Original Fortran code:
W. J. Cody, Argonne National Laboratory
Translation to C and adaptation to R:
Martin Maechler maechler@stat.math.ethz.ch.
来源
C 代码是 Fortran 例程的翻译https://netlib.org/specfun/ribesl, '../rjbeslbessel[IJKY] 的四个源代码文件每个都包含一段 “Acknowledgement” 和 “References”,其简短摘要为
- 贝塞尔
-
基于 David J. Sookne 的(代码),请参阅 Sookne (1973)... 修改... 早期版本发表于 Cody (1983)。
- 贝塞尔
-
如
besselI
- 贝塞尔K
-
基于 J. B. Campbell (1980) 的(代码)...修改...
- 贝塞尔
-
大量借鉴了 Temme 的 Algol 程序 ... 以及 Campbell 的 程序 .... ... 进行了大量修改。
参考
Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions. Dover, New York; Chapter 9: Bessel Functions of Integer Order.
In order of “Source” citation above:
Sookne, David J. (1973). Bessel Functions of Real Argument and Integer Order. Journal of Research of the National Bureau of Standards, 77B, 125-132. doi:10.6028/jres.077B.012.
Cody, William J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Transactions on Mathematical Software, 9(2), 242-245. doi:10.1145/357456.357462.
Campbell, J.B. (1980). On Temme's algorithm for the modified Bessel function of the third kind. ACM Transactions on Mathematical Software, 6(4), 581-586. doi:10.1145/355921.355928.
Campbell, J.B. (1979). Bessel functions J_nu(x) and Y_nu(x) of float order and float argument. Computer Physics Communications, 18, 133-142. doi:10.1016/0010-4655(79)90030-4.
Temme, Nico M. (1976). On the numerical evaluation of the ordinary Bessel function of the second kind. Journal of Computational Physics, 21, 343-350. doi:10.1016/0021-9991(76)90032-2.
也可以看看
相关用法
- R file.path 构造文件路径
- R grep 模式匹配和替换
- R getwd 获取或设置工作目录
- R vector 向量 - 创建、强制等
- R lapply 对列表或向量应用函数
- R dump R 对象的文本表示
- R Sys.getenv 获取环境变量
- R rank 样本排名
- R getDLLRegisteredRoutines DLL 中 C/Fortran 例程的反射信息
- R pushBack 将文本推回连接
- R strsplit 分割字符向量的元素
- R seq.Date 生成规则的日期序列
- R invisible 将打印模式更改为不可见
- R noquote “无引号”字符串打印类
- R warning 警告信息
- R rapply 递归地将函数应用于列表
- R basename 操作文件路径
- R with 评估数据环境中的表达式
- R formals 访问和操纵形式参数
- R icuSetCollate 按 ICU 设置整理
- R search 给出 R 对象的搜索路径
- R Defunct 将对象标记为已失效
- R gzcon 通过连接(解)压缩 I/O
- R readRenviron 从文件设置环境变量
- R Sys.localeconv 查找当前语言环境中数字和货币表示形式的详细信息
注:本文由纯净天空筛选整理自R-devel大神的英文原创作品 Bessel Functions。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。