当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python pyspark DecisionTreeClassifier用法及代码示例


本文简要介绍 pyspark.ml.classification.DecisionTreeClassifier 的用法。

用法:

class pyspark.ml.classification.DecisionTreeClassifier(*, featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini', seed=None, weightCol=None, leafCol='', minWeightFractionPerNode=0.0)

Decision tree 学习分类算法。它支持二进制和多类标签,以及连续和分类特征。

1.4.0 版中的新函数。

例子

>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = spark.createDataFrame([
...     (1.0, Vectors.dense(1.0)),
...     (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed", leafCol="leafId")
>>> model = dt.fit(td)
>>> model.getLabelCol()
'indexed'
>>> model.setFeaturesCol("features")
DecisionTreeClassificationModel...
>>> model.numNodes
3
>>> model.depth
1
>>> model.featureImportances
SparseVector(1, {0: 1.0})
>>> model.numFeatures
1
>>> model.numClasses
2
>>> print(model.toDebugString)
DecisionTreeClassificationModel...depth=1, numNodes=3...
>>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.predict(test0.head().features)
0.0
>>> model.predictRaw(test0.head().features)
DenseVector([1.0, 0.0])
>>> model.predictProbability(test0.head().features)
DenseVector([1.0, 0.0])
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> result.probability
DenseVector([1.0, 0.0])
>>> result.rawPrediction
DenseVector([1.0, 0.0])
>>> result.leafId
0.0
>>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
>>> dtc_path = temp_path + "/dtc"
>>> dt.save(dtc_path)
>>> dt2 = DecisionTreeClassifier.load(dtc_path)
>>> dt2.getMaxDepth()
2
>>> model_path = temp_path + "/dtc_model"
>>> model.save(model_path)
>>> model2 = DecisionTreeClassificationModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True
>>> model.transform(test0).take(1) == model2.transform(test0).take(1)
True
>>> df3 = spark.createDataFrame([
...     (1.0, 0.2, Vectors.dense(1.0)),
...     (1.0, 0.8, Vectors.dense(1.0)),
...     (0.0, 1.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"])
>>> si3 = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model3 = si3.fit(df3)
>>> td3 = si_model3.transform(df3)
>>> dt3 = DecisionTreeClassifier(maxDepth=2, weightCol="weight", labelCol="indexed")
>>> model3 = dt3.fit(td3)
>>> print(model3.toDebugString)
DecisionTreeClassificationModel...depth=1, numNodes=3...

相关用法


注:本文由纯净天空筛选整理自spark.apache.org大神的英文原创作品 pyspark.ml.classification.DecisionTreeClassifier。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。