用法:
class mxnet.metric.NegativeLogLikelihood(eps=1e-12, name='nll-loss', output_names=None, label_names=None)
- eps:(
float
) - 当预测值为 0 时,负对数似然损失未定义,因此预测值会与小常数相加。 - name:(
str
) - 此度量实例的名称用于显示。 - output_names:(
list of str
, or
None
) - 使用update_dict 更新时应使用的预测名称。默认情况下包括所有预测。 - label_names:(
list of str
, or
None
) - 使用update_dict 更新时应使用的标签名称。默认情况下包括所有标签。
- eps:(
参数:
计算负对数似然损失。
一批样本大小 的负 log-likelihoodd 损失由下式给出
其中 是类的数量, 是 -th 类的预测概率 -th 样本。 当且仅当样本 属于类 。
例子:
>>> predicts = [mx.nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])] >>> labels = [mx.nd.array([0, 1, 1])] >>> nll_loss = mx.metric.NegativeLogLikelihood() >>> nll_loss.update(labels, predicts) >>> print nll_loss.get() ('nll-loss', 0.57159948348999023)
相关用法
- Python mxnet.metric.F1用法及代码示例
- Python mxnet.metric.TopKAccuracy用法及代码示例
- Python mxnet.metric.CompositeEvalMetric用法及代码示例
- Python mxnet.metric.create用法及代码示例
- Python mxnet.metric.RMSE用法及代码示例
- Python mxnet.metric.MAE用法及代码示例
- Python mxnet.metric.MCC用法及代码示例
- Python mxnet.metric.MSE用法及代码示例
- Python mxnet.metric.CrossEntropy用法及代码示例
- Python mxnet.metric.CustomMetric用法及代码示例
- Python mxnet.metric.np用法及代码示例
- Python mxnet.metric.Accuracy用法及代码示例
- Python mxnet.metric.PCC用法及代码示例
- Python mxnet.metric.Perplexity用法及代码示例
- Python mxnet.metric.PearsonCorrelation用法及代码示例
- Python mxnet.module.BaseModule.get_outputs用法及代码示例
- Python mxnet.module.BaseModule.forward用法及代码示例
- Python mxnet.module.BaseModule.bind用法及代码示例
- Python mxnet.module.BaseModule.init_params用法及代码示例
- Python mxnet.module.BaseModule.get_params用法及代码示例
- Python mxnet.module.BaseModule.set_params用法及代码示例
- Python mxnet.module.BaseModule.update用法及代码示例
- Python mxnet.module.SequentialModule.add用法及代码示例
- Python mxnet.module.BaseModule.iter_predict用法及代码示例
- Python mxnet.module.BaseModule.save_params用法及代码示例
注:本文由纯净天空筛选整理自apache.org大神的英文原创作品 mxnet.metric.NegativeLogLikelihood。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。