当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python numpy.float_power()用法及代码示例


numpy.float_power(arr1,arr2,out = None,其中= True,强制转换=“ same_kind”,order =“ K”,dtype = None):
来自第一个数组的数组元素被提升为来自第二个元素的元素的幂(所有情况都逐个元素发生)。 arr1和arr2必须具有相同的形状。
float_power与幂函数的不同之处在于,将整数float16和float32提升为float64的最小精度为float64,因此结果始终是不精确的。此函数将为负幂返回可用结果,而对于+ ve幂则很少溢出。

参数:

arr1     : [array_like]Input array or object which works as base.
arr2     : [array_like]Input array or object which works as exponent. 
out      : [ndarray, optional]Output array with same dimensions as Input array, 
            placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.

返回:


An array with elements of arr1 raised to exponents in arr2


代码1:将arr1提升为arr2

# Python program explaining 
# float_power() function 
import numpy as np 
  
# input_array 
arr1 = [2, 2, 2, 2, 2] 
arr2 = [2, 3, 4, 5, 6] 
print ("arr1         : ", arr1) 
print ("arr1         : ", arr2) 
  
# output_array 
out = np.float_power(arr1, arr2) 
print ("\nOutput array : ", out)

输出:

arr1         :  [2, 2, 2, 2, 2]
arr1         :  [2, 3, 4, 5, 6]

Output array :  [  4.   8.  16.  32.  64.]


代码2:将arr1的元素提高到指数2

# Python program explaining 
# float_power() function 
import numpy as np 
  
# input_array 
arr1 = np.arange(8) 
exponent = 2
print ("arr1         : ", arr1) 
  
# output_array 
out = np.float_power(arr1, exponent) 
print ("\nOutput array : ", out)

输出:

arr1         :  [0 1 2 3 4 5 6 7]

Output array :  [  0.   1.   4.   9.  16.  25.  36.  49.]


代码3:如果arr2具有-ve元素,则float_power处理结果

# Python program explaining 
# float_power() function 
import numpy as np 
  
# input_array 
arr1 = [2, 2, 2, 2, 2] 
arr2 = [2, -3, 4, -5, 6] 
print ("arr1         : ", arr1) 
print ("arr2         : ", arr2) 
  
# output_array 
out = np.float_power(arr1, arr2) 
print ("\nOutput array : ", out)

输出:

arr1         :  [2, 2, 2, 2, 2]
arr2         :  [2, -3, 4, -5, 6]

Output array :  [  4.00000000e+00   1.25000000e-01   1.60000000e+01   
                3.12500000e-02   6.40000000e+01]

参考文献:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.float_power.html#numpy.float_power



相关用法


注:本文由纯净天空筛选整理自Mohit Gupta_OMG 大神的英文原创作品 numpy.float_power() in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。