當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


Python numpy.float_power()用法及代碼示例


numpy.float_power(arr1,arr2,out = None,其中= True,強製轉換=“ same_kind”,order =“ K”,dtype = None):
來自第一個數組的數組元素被提升為來自第二個元素的元素的冪(所有情況都逐個元素發生)。 arr1和arr2必須具有相同的形狀。
float_power與冪函數的不同之處在於,將整數float16和float32提升為float64的最小精度為float64,因此結果始終是不精確的。此函數將為負冪返回可用結果,而對於+ ve冪則很少溢出。

參數:

arr1     : [array_like]Input array or object which works as base.
arr2     : [array_like]Input array or object which works as exponent. 
out      : [ndarray, optional]Output array with same dimensions as Input array, 
            placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.

返回:


An array with elements of arr1 raised to exponents in arr2


代碼1:將arr1提升為arr2

# Python program explaining 
# float_power() function 
import numpy as np 
  
# input_array 
arr1 = [2, 2, 2, 2, 2] 
arr2 = [2, 3, 4, 5, 6] 
print ("arr1         : ", arr1) 
print ("arr1         : ", arr2) 
  
# output_array 
out = np.float_power(arr1, arr2) 
print ("\nOutput array : ", out)

輸出:

arr1         :  [2, 2, 2, 2, 2]
arr1         :  [2, 3, 4, 5, 6]

Output array :  [  4.   8.  16.  32.  64.]


代碼2:將arr1的元素提高到指數2

# Python program explaining 
# float_power() function 
import numpy as np 
  
# input_array 
arr1 = np.arange(8) 
exponent = 2
print ("arr1         : ", arr1) 
  
# output_array 
out = np.float_power(arr1, exponent) 
print ("\nOutput array : ", out)

輸出:

arr1         :  [0 1 2 3 4 5 6 7]

Output array :  [  0.   1.   4.   9.  16.  25.  36.  49.]


代碼3:如果arr2具有-ve元素,則float_power處理結果

# Python program explaining 
# float_power() function 
import numpy as np 
  
# input_array 
arr1 = [2, 2, 2, 2, 2] 
arr2 = [2, -3, 4, -5, 6] 
print ("arr1         : ", arr1) 
print ("arr2         : ", arr2) 
  
# output_array 
out = np.float_power(arr1, arr2) 
print ("\nOutput array : ", out)

輸出:

arr1         :  [2, 2, 2, 2, 2]
arr2         :  [2, -3, 4, -5, 6]

Output array :  [  4.00000000e+00   1.25000000e-01   1.60000000e+01   
                3.12500000e-02   6.40000000e+01]

參考文獻:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.float_power.html#numpy.float_power



相關用法


注:本文由純淨天空篩選整理自Mohit Gupta_OMG 大神的英文原創作品 numpy.float_power() in Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。