本文整理汇总了VB.NET中System.Math.Log方法的典型用法代码示例。如果您正苦于以下问题:VB.NET Math.Log方法的具体用法?VB.NET Math.Log怎么用?VB.NET Math.Log使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Math
的用法示例。
在下文中一共展示了Math.Log方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的VB.NET代码示例。
示例1: Example
Module Example
Sub Main()
Console.WriteLine( _
" Evaluate this identity with selected values for X:")
Console.WriteLine(" ln(x) = 1 / log[X](B)")
Console.WriteLine()
Dim XArgs() As Double = { 1.2, 4.9, 9.9, 0.1 }
For Each argX As Double In XArgs
' Find natural log of argX.
Console.WriteLine(" Math.Log({0}) = {1:E16}", _
argX, Math.Log(argX))
' Evaluate 1 / log[X](e).
Console.WriteLine(" 1.0 / Math.Log(e, {0}) = {1:E16}", _
argX, 1.0 / Math.Log(Math.E, argX))
Console.WriteLine()
Next
End Sub
End Module
输出:
Evaluate this identity with selected values for X: ln(x) = 1 / log[X](B) Math.Log(1.2) = 1.8232155679395459E-001 1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001 Math.Log(4.9) = 1.5892352051165810E+000 1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000 Math.Log(9.9) = 2.2925347571405443E+000 1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000 Math.Log(0.1) = -2.3025850929940455E+000 1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000
示例2: LogDLogDD
' Example for the Math.Log( Double ) and Math.Log( Double, Double ) methods.
Module LogDLogDD
Sub Main()
Console.WriteLine( _
"This example of Math.Log( Double ) and " + _
"Math.Log( Double, Double )" & vbCrLf & _
"generates the following output." & vbCrLf)
Console.WriteLine( _
"Evaluate these identities with selected " & _
"values for X and B (base):")
Console.WriteLine(" log(B)[X] = 1 / log(X)[B]")
Console.WriteLine(" log(B)[X] = ln[X] / ln[B]")
Console.WriteLine(" log(B)[X] = log(B)[e] * ln[X]")
UseBaseAndArg(0.1, 1.2)
UseBaseAndArg(1.2, 4.9)
UseBaseAndArg(4.9, 9.9)
UseBaseAndArg(9.9, 0.1)
End Sub
' Evaluate logarithmic identities that are functions of two arguments.
Sub UseBaseAndArg(argB As Double, argX As Double)
' Evaluate log(B)[X] = 1 / log(X)[B].
Console.WriteLine( _
vbCrLf & " Math.Log({1}, {0}) = {2:E16}" + _
vbCrLf & " 1.0 / Math.Log({0}, {1}) = {3:E16}", _
argB, argX, Math.Log(argX, argB), _
1.0 / Math.Log(argB, argX))
' Evaluate log(B)[X] = ln[X] / ln[B].
Console.WriteLine( _
" Math.Log({1}) / Math.Log({0}) = {2:E16}", _
argB, argX, Math.Log(argX) / Math.Log(argB))
' Evaluate log(B)[X] = log(B)[e] * ln[X].
Console.WriteLine( _
"Math.Log(Math.E, {0}) * Math.Log({1}) = {2:E16}", _
argB, argX, Math.Log(Math.E, argB) * Math.Log(argX))
End Sub
End Module 'LogDLogDD
' This example of Math.Log( Double ) and Math.Log( Double, Double )
输出:
Evaluate these identities with selected values for X and B (base): log(B)[X] = 1 / log(X)[B] log(B)[X] = ln[X] / ln[B] log(B)[X] = log(B)[e] * ln[X] Math.Log(1.2, 0.1) = -7.9181246047624818E-002 1.0 / Math.Log(0.1, 1.2) = -7.9181246047624818E-002 Math.Log(1.2) / Math.Log(0.1) = -7.9181246047624818E-002 Math.Log(Math.E, 0.1) * Math.Log(1.2) = -7.9181246047624804E-002 Math.Log(4.9, 1.2) = 8.7166610085093179E+000 1.0 / Math.Log(1.2, 4.9) = 8.7166610085093161E+000 Math.Log(4.9) / Math.Log(1.2) = 8.7166610085093179E+000 Math.Log(Math.E, 1.2) * Math.Log(4.9) = 8.7166610085093179E+000 Math.Log(9.9, 4.9) = 1.4425396251981288E+000 1.0 / Math.Log(4.9, 9.9) = 1.4425396251981288E+000 Math.Log(9.9) / Math.Log(4.9) = 1.4425396251981288E+000 Math.Log(Math.E, 4.9) * Math.Log(9.9) = 1.4425396251981288E+000 Math.Log(0.1, 9.9) = -1.0043839404494075E+000 1.0 / Math.Log(9.9, 0.1) = -1.0043839404494075E+000 Math.Log(0.1) / Math.Log(9.9) = -1.0043839404494075E+000 Math.Log(Math.E, 9.9) * Math.Log(0.1) = -1.0043839404494077E+000