本文整理汇总了VB.NET中System.Math.Cos方法的典型用法代码示例。如果您正苦于以下问题:VB.NET Math.Cos方法的具体用法?VB.NET Math.Cos怎么用?VB.NET Math.Cos使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Math
的用法示例。
在下文中一共展示了Math.Cos方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的VB.NET代码示例。
示例1: SinCos
' Example for the trigonometric Math.Sin( Double ) and Math.Cos( Double ) methods.
Module SinCos
Sub Main()
Console.WriteLine( _
"This example of trigonometric " & _
"Math.Sin( double ) and Math.Cos( double )" & vbCrLf & _
"generates the following output." & vbCrLf)
Console.WriteLine( _
"Convert selected values for X to radians " & vbCrLf & _
"and evaluate these trigonometric identities:")
Console.WriteLine( _
" sin^2(X) + cos^2(X) = 1" & vbCrLf & _
" sin(2 * X) = 2 * sin(X) * cos(X)")
Console.WriteLine(" cos(2 * X) = cos^2(X) - sin^2(X)")
UseSineCosine(15.0)
UseSineCosine(30.0)
UseSineCosine(45.0)
Console.WriteLine( _
vbCrLf & "Convert selected values for X and Y to radians" & _
vbCrLf & "and evaluate these trigonometric identities:")
Console.WriteLine(" sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)")
Console.WriteLine(" cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)")
UseTwoAngles(15.0, 30.0)
UseTwoAngles(30.0, 45.0)
End Sub
' Evaluate trigonometric identities with a given angle.
Sub UseSineCosine(degrees As Double)
Dim angle As Double = Math.PI * degrees / 180.0
Dim sinAngle As Double = Math.Sin(angle)
Dim cosAngle As Double = Math.Cos(angle)
' Evaluate sin^2(X) + cos^2(X) = 1.
Console.WriteLine( _
vbCrLf & " Math.Sin({0} deg) = {1:E16}" & _
vbCrLf & " Math.Cos({0} deg) = {2:E16}", _
degrees, Math.Sin(angle), Math.Cos(angle))
Console.WriteLine( _
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 = {1:E16}", _
degrees, sinAngle * sinAngle + cosAngle * cosAngle)
' Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
Console.WriteLine( _
" Math.Sin({0} deg) = {1:E16}", _
2.0 * degrees, Math.Sin(2.0 * angle))
Console.WriteLine( _
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) = {1:E16}", _
degrees, 2.0 * sinAngle * cosAngle)
' Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
Console.WriteLine( _
" Math.Cos({0} deg) = {1:E16}", _
2.0 * degrees, Math.Cos(2.0 * angle))
Console.WriteLine( _
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 = {1:E16}", _
degrees, cosAngle * cosAngle - sinAngle * sinAngle)
End Sub
' Evaluate trigonometric identities that are functions of two angles.
Sub UseTwoAngles(degreesX As Double, degreesY As Double)
Dim angleX As Double = Math.PI * degreesX / 180.0
Dim angleY As Double = Math.PI * degreesY / 180.0
' Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine( _
vbCrLf & " Math.Sin({0} deg) * Math.Cos({1} deg) +" & _
vbCrLf & " Math.Cos({0} deg) * Math.Sin({1} deg) = {2:E16}", _
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + _
Math.Cos(angleX) * Math.Sin(angleY))
Console.WriteLine( _
" Math.Sin({0} deg) = {1:E16}", _
degreesX + degreesY, Math.Sin(angleX + angleY))
' Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine( _
" Math.Cos({0} deg) * Math.Cos({1} deg) -" & vbCrLf & _
" Math.Sin({0} deg) * Math.Sin({1} deg) = {2:E16}", _
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - _
Math.Sin(angleX) * Math.Sin(angleY))
Console.WriteLine( _
" Math.Cos({0} deg) = {1:E16}", _
degreesX + degreesY, Math.Cos(angleX + angleY))
End Sub
End Module 'SinCos
' This example of trigonometric Math.Sin( double ) and Math.Cos( double )
输出:
Convert selected values for X to radians and evaluate these trigonometric identities: sin^2(X) + cos^2(X) = 1 sin(2 * X) = 2 * sin(X) * cos(X) cos(2 * X) = cos^2(X) - sin^2(X) Math.Sin(15 deg) = 2.5881904510252074E-001 Math.Cos(15 deg) = 9.6592582628906831E-001 (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000 Math.Sin(30 deg) = 4.9999999999999994E-001 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001 Math.Cos(30 deg) = 8.6602540378443871E-001 (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001 Math.Sin(30 deg) = 4.9999999999999994E-001 Math.Cos(30 deg) = 8.6602540378443871E-001 (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000 Math.Sin(60 deg) = 8.6602540378443860E-001 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001 Math.Cos(60 deg) = 5.0000000000000011E-001 (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001 Math.Sin(45 deg) = 7.0710678118654746E-001 Math.Cos(45 deg) = 7.0710678118654757E-001 (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000 Math.Sin(90 deg) = 1.0000000000000000E+000 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000 Math.Cos(90 deg) = 6.1230317691118863E-017 (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016 Convert selected values for X and Y to radians and evaluate these trigonometric identities: sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y) cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y) Math.Sin(15 deg) * Math.Cos(30 deg) + Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001 Math.Sin(45 deg) = 7.0710678118654746E-001 Math.Cos(15 deg) * Math.Cos(30 deg) - Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001 Math.Cos(45 deg) = 7.0710678118654757E-001 Math.Sin(30 deg) * Math.Cos(45 deg) + Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001 Math.Sin(75 deg) = 9.6592582628906820E-001 Math.Cos(30 deg) * Math.Cos(45 deg) - Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001 Math.Cos(75 deg) = 2.5881904510252096E-001
示例2: Tester
Public Class Tester
Public Shared Sub Main
Dim X As Single
Dim Y As Single
X = CSng( Math.Cos(100))
Y = CSng( Math.Sin(100))
Console.WriteLine(X)
Console.WriteLine(Y)
End Sub
End Class