本文整理汇总了Python中volumina.api.AlphaModulatedLayer.visible方法的典型用法代码示例。如果您正苦于以下问题:Python AlphaModulatedLayer.visible方法的具体用法?Python AlphaModulatedLayer.visible怎么用?Python AlphaModulatedLayer.visible使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类volumina.api.AlphaModulatedLayer
的用法示例。
在下文中一共展示了AlphaModulatedLayer.visible方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _initPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def _initPredictionLayers(self, predictionSlot):
opLane = self.topLevelOperatorView
if not opLane.LabelNames.ready() or not opLane.PmapColors.ready():
return []
layers = []
colors = opLane.PmapColors.value
names = opLane.LabelNames.value
# Use a slicer to provide a separate slot for each channel layer
opSlicer = OpMultiArraySlicer2( parent=opLane.viewed_operator().parent )
opSlicer.Input.connect( predictionSlot )
opSlicer.AxisFlag.setValue('c')
for channel, channelSlot in enumerate(opSlicer.Slices):
if channelSlot.ready() and channel < len(colors) and channel < len(names):
drange = channelSlot.meta.drange or (0.0, 1.0)
predictsrc = LazyflowSource(channelSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=QColor(*colors[channel]),
# FIXME: This is weird. Why are range and normalize both set to the same thing?
range=drange,
normalize=drange )
predictLayer.opacity = 0.25
predictLayer.visible = True
predictLayer.name = names[channel]
layers.append(predictLayer)
return layers
示例2: _initPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def _initPredictionLayers(self, predictionSlot):
opLane = self.topLevelOperatorView
layers = []
# Use a slicer to provide a separate slot for each channel layer
opSlicer = OpMultiArraySlicer2(parent=opLane.viewed_operator().parent)
opSlicer.Input.connect(predictionSlot)
opSlicer.AxisFlag.setValue('c')
for channel, predictionSlot in enumerate(opSlicer.Slices):
if predictionSlot.ready():
predictsrc = LazyflowSource(predictionSlot)
predictLayer = AlphaModulatedLayer(predictsrc, range=(0.0, 1.0), normalize=(0.0, 1.0))
predictLayer.opacity = 0.25
predictLayer.visible = True
def setPredLayerName(n, predictLayer_=predictLayer, initializing=False):
"""
function for setting the names for every Channel
"""
if not initializing and predictLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
newName = "Prediction for %s" % n
predictLayer_.name = newName
setPredLayerName(channel, initializing=True)
layers.append(predictLayer)
return layers
示例3: _initPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def _initPredictionLayers(self, predictionSlot):
layers = []
opLane = self.topLevelOperatorView
colors = opLane.PmapColors.value
names = opLane.LabelNames.value
# Use a slicer to provide a separate slot for each channel layer
opSlicer = OpMultiArraySlicer2( parent=opLane.viewed_operator() )
opSlicer.Input.connect( predictionSlot )
opSlicer.AxisFlag.setValue('c')
for channel, channelSlot in enumerate(opSlicer.Slices):
if channelSlot.ready() and channel < len(colors) and channel < len(names):
predictsrc = LazyflowSource(channelSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=QColor(*colors[channel]),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
predictLayer.opacity = 0.25
predictLayer.visible = True
predictLayer.name = names[channel]
layers.append(predictLayer)
return layers
示例4: setupPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupPredictionLayers(self, predictionChannels, name_suffix):
"""
Setup the layers for predicted class probabilities
"""
labels = self.labelListData
layers = []
# Add each of the predictions
for channel, predictionSlot in enumerate(predictionChannels):
if predictionSlot.ready() and channel < len(labels):
ref_label = labels[channel]
predictsrc = LazyflowSource(predictionSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=ref_label.color,
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
predictLayer.opacity = 0.25
predictLayer.visible = self._viewerControlUi.liveUpdateButton.isChecked()
predictLayer.visibleChanged.connect(self.updateShowPredictionCheckbox)
def setLayerColor(c):
predictLayer.tintColor = c
def setLayerName(n):
newName = "Prediction for %s %s" % (ref_label.name, name_suffix)
predictLayer.name = newName
setLayerName(ref_label.name)
ref_label.colorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setLayerName)
layers.append(predictLayer)
return layers
示例5: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
"""
which layers will be shown in the layerviewergui.
Triggers the prediciton by setting the layer on visible
"""
inputSlot = self.topLevelOperator.InputImage
layers = []
for channel, predictionSlot in enumerate(self.topLevelOperator.PredictionProbabilityChannels):
if predictionSlot.ready():
predictsrc = LazyflowSource(predictionSlot)
predictionLayer = AlphaModulatedLayer(predictsrc, range=(0.0, 1.0), normalize=(0.0, 1.0))
predictionLayer.visible = self.drawer.liveUpdateButton.isChecked()
predictionLayer.opacity = 0.25
predictionLayer.visibleChanged.connect(self.updateShowPredictionCheckbox)
def setPredLayerName(n, predictLayer_=predictionLayer, initializing=False):
"""
function for setting the names for every Channel
"""
if not initializing and predictLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
newName = "Prediction for %s" % n
predictLayer_.name = newName
setPredLayerName(channel, initializing=True)
layers.append(predictionLayer)
# always as last layer
if inputSlot.ready():
rawLayer = self.createStandardLayerFromSlot(inputSlot)
rawLayer.visible = True
rawLayer.opacity = 1.0
rawLayer.name = "Raw Data (display only)"
layers.append(rawLayer)
return layers
示例6: _initPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def _initPredictionLayers(self, predictionSlot):
opLane = self.topLevelOperatorView
if not opLane.LabelNames.ready() or not opLane.PmapColors.ready():
return []
layers = []
colors = opLane.PmapColors.value
names = opLane.LabelNames.value
if predictionSlot.ready():
if 'c' in predictionSlot.meta.getAxisKeys():
num_channels = predictionSlot.meta.getTaggedShape()['c']
else:
num_channels = 1
if num_channels != len(names) or num_channels != len(colors):
names = ["Label {}".format(n) for n in range(1, num_channels+1)]
colors = num_channels * [(0, 0, 0)] # it doesn't matter, if the pmaps color is not known,
# we are either initializing and it will be rewritten or
# something is very wrong elsewhere
# Use a slicer to provide a separate slot for each channel layer
opSlicer = OpMultiArraySlicer2( parent=opLane.viewed_operator().parent )
opSlicer.Input.connect( predictionSlot )
opSlicer.AxisFlag.setValue('c')
for channel, channelSlot in enumerate(opSlicer.Slices):
if channelSlot.ready() and channel < len(colors) and channel < len(names):
drange = channelSlot.meta.drange or (0.0, 1.0)
predictsrc = LazyflowSource(channelSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=QColor(*colors[channel]),
# FIXME: This is weird. Why are range and normalize both set to the same thing?
range=drange,
normalize=drange )
predictLayer.opacity = 0.25
predictLayer.visible = True
predictLayer.name = names[channel]
layers.append(predictLayer)
return layers
示例7: _initPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def _initPredictionLayers(self, predictionSlot):
layers = []
colors = []
names = []
opLane = self.topLevelOperatorView
if opLane.PmapColors.ready():
colors = opLane.PmapColors.value
if opLane.LabelNames.ready():
names = opLane.LabelNames.value
# Use a slicer to provide a separate slot for each channel layer
opSlicer = OpMultiArraySlicer2(parent=opLane.viewed_operator().parent)
opSlicer.Input.connect(predictionSlot)
opSlicer.AxisFlag.setValue("c")
colors = map(lambda c: QColor(*c), colors)
for channel in range(len(colors), len(opSlicer.Slices)):
colors.append(PredictionViewerGui.DefaultColors[channel])
for channel in range(len(names), len(opSlicer.Slices)):
names.append("Class {}".format(channel + 1))
for channel, channelSlot in enumerate(opSlicer.Slices):
if channelSlot.ready() and channel < len(colors) and channel < len(names):
predictsrc = LazyflowSource(channelSlot)
predictLayer = AlphaModulatedLayer(
predictsrc, tintColor=colors[channel], range=(0.0, 1.0), normalize=(0.0, 1.0)
)
predictLayer.opacity = 0.25
predictLayer.visible = True
predictLayer.name = names[channel]
layers.append(predictLayer)
return layers
示例8: _initPredictionLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def _initPredictionLayers(self, predictionSlot):
layers = []
opLane = self.topLevelOperatorView
# Use a slicer to provide a separate slot for each channel layer
opSlicer = OpMultiArraySlicer2( parent=opLane.viewed_operator().parent )
opSlicer.Input.connect( predictionSlot )
opSlicer.AxisFlag.setValue('c')
for channel, channelSlot in enumerate(opSlicer.Slices):
if channelSlot.ready():
drange = channelSlot.meta.drange or (0.0, 1.0)
predictsrc = LazyflowSource(channelSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=QColor.fromRgba(self._colorTable16[channel+1]),
# FIXME: This is weird. Why are range and normalize both set to the same thing?
range=drange,
normalize=drange )
predictLayer.opacity = 1.0
predictLayer.visible = True
predictLayer.name = "Probability Channel #{}".format( channel+1 )
layers.append(predictLayer)
return layers
示例9: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
"""
Called by our base class when one of our data slots has changed.
This function creates a layer for each slot we want displayed in the volume editor.
"""
# Base class provides the label layer.
layers = super(PixelClassificationGui, self).setupLayers()
ActionInfo = ShortcutManager.ActionInfo
if ilastik_config.getboolean('ilastik', 'debug'):
# Add the label projection layer.
labelProjectionSlot = self.topLevelOperatorView.opLabelPipeline.opLabelArray.Projection2D
if labelProjectionSlot.ready():
projectionSrc = LazyflowSource(labelProjectionSlot)
try:
# This colortable requires matplotlib
from volumina.colortables import jet
projectionLayer = ColortableLayer( projectionSrc,
colorTable=[QColor(0,0,0,128).rgba()]+jet(N=255),
normalize=(0.0, 1.0) )
except (ImportError, RuntimeError):
pass
else:
projectionLayer.name = "Label Projection"
projectionLayer.visible = False
projectionLayer.opacity = 1.0
layers.append(projectionLayer)
# Show the mask over everything except labels
maskSlot = self.topLevelOperatorView.PredictionMasks
if maskSlot.ready():
maskLayer = self._create_binary_mask_layer_from_slot( maskSlot )
maskLayer.name = "Mask"
maskLayer.visible = True
maskLayer.opacity = 1.0
layers.append( maskLayer )
# Add the uncertainty estimate layer
uncertaintySlot = self.topLevelOperatorView.UncertaintyEstimate
if uncertaintySlot.ready():
uncertaintySrc = LazyflowSource(uncertaintySlot)
uncertaintyLayer = AlphaModulatedLayer( uncertaintySrc,
tintColor=QColor( Qt.cyan ),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
uncertaintyLayer.name = "Uncertainty"
uncertaintyLayer.visible = False
uncertaintyLayer.opacity = 1.0
uncertaintyLayer.shortcutRegistration = ( "u", ActionInfo( "Prediction Layers",
"Uncertainty",
"Show/Hide Uncertainty",
uncertaintyLayer.toggleVisible,
self.viewerControlWidget(),
uncertaintyLayer ) )
layers.append(uncertaintyLayer)
labels = self.labelListData
# Add each of the segmentations
for channel, segmentationSlot in enumerate(self.topLevelOperatorView.SegmentationChannels):
if segmentationSlot.ready() and channel < len(labels):
ref_label = labels[channel]
segsrc = LazyflowSource(segmentationSlot)
segLayer = AlphaModulatedLayer( segsrc,
tintColor=ref_label.pmapColor(),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
segLayer.opacity = 1
segLayer.visible = False #self.labelingDrawerUi.liveUpdateButton.isChecked()
segLayer.visibleChanged.connect(self.updateShowSegmentationCheckbox)
def setLayerColor(c, segLayer_=segLayer, initializing=False):
if not initializing and segLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
segLayer_.tintColor = c
self._update_rendering()
def setSegLayerName(n, segLayer_=segLayer, initializing=False):
if not initializing and segLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
oldname = segLayer_.name
newName = "Segmentation (%s)" % n
segLayer_.name = newName
if not self.render:
return
if oldname in self._renderedLayers:
label = self._renderedLayers.pop(oldname)
self._renderedLayers[newName] = label
setSegLayerName(ref_label.name, initializing=True)
ref_label.pmapColorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setSegLayerName)
#.........这里部分代码省略.........
示例10: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
# Base class provides the label layer.
layers = super(ObjectClassificationGui, self).setupLayers()
binarySlot = self.op.BinaryImages
segmentedSlot = self.op.SegmentationImages
rawSlot = self.op.RawImages
#This is just for colors
labels = self.labelListData
for channel, probSlot in enumerate(self.op.PredictionProbabilityChannels):
if probSlot.ready() and channel < len(labels):
ref_label = labels[channel]
probsrc = LazyflowSource(probSlot)
probLayer = AlphaModulatedLayer( probsrc,
tintColor=ref_label.pmapColor(),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
probLayer.opacity = 0.25
#probLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
#False, because it's much faster to draw predictions without these layers below
probLayer.visible = False
probLayer.setToolTip("Probability that the object belongs to class {}".format(channel+1))
def setLayerColor(c, predictLayer_=probLayer, ch=channel, initializing=False):
if not initializing and predictLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
predictLayer_.tintColor = c
def setLayerName(n, predictLayer_=probLayer, initializing=False):
if not initializing and predictLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
newName = "Prediction for %s" % n
predictLayer_.name = newName
setLayerName(ref_label.name, initializing=True)
ref_label.pmapColorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setLayerName)
layers.append(probLayer)
predictionSlot = self.op.PredictionImages
if predictionSlot.ready():
predictsrc = LazyflowSource(predictionSlot)
self._colorTable16_forpmaps[0] = 0
predictLayer = ColortableLayer(predictsrc,
colorTable=self._colorTable16_forpmaps)
predictLayer.name = self.PREDICTION_LAYER_NAME
predictLayer.ref_object = None
predictLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
predictLayer.opacity = 0.5
predictLayer.setToolTip("Classification results, assigning a label to each object")
# This weakref stuff is a little more fancy than strictly necessary.
# The idea is to use the weakref's callback to determine when this layer instance is destroyed by the garbage collector,
# and then we disconnect the signal that updates that layer.
weak_predictLayer = weakref.ref( predictLayer )
colortable_changed_callback = bind( self._setPredictionColorTable, weak_predictLayer )
self._labelControlUi.labelListModel.dataChanged.connect( colortable_changed_callback )
weak_predictLayer2 = weakref.ref( predictLayer, partial(self._disconnect_dataChange_callback, colortable_changed_callback) )
# We have to make sure the weakref isn't destroyed because it is responsible for calling the callback.
# Therefore, we retain it by adding it to a list.
self._retained_weakrefs.append( weak_predictLayer2 )
# Ensure we're up-to-date (in case this is the first time the prediction layer is being added.
for row in range( self._labelControlUi.labelListModel.rowCount() ):
self._setPredictionColorTableForRow( predictLayer, row )
# put right after Labels, so that it is visible after hitting "live
# predict".
layers.insert(1, predictLayer)
badObjectsSlot = self.op.BadObjectImages
if badObjectsSlot.ready():
ct_black = [0, QColor(Qt.black).rgba()]
badSrc = LazyflowSource(badObjectsSlot)
badLayer = ColortableLayer(badSrc, colorTable = ct_black)
badLayer.name = "Ambiguous objects"
badLayer.setToolTip("Objects with infinite or invalid values in features")
badLayer.visible = False
layers.append(badLayer)
if segmentedSlot.ready():
ct = colortables.create_default_16bit()
objectssrc = LazyflowSource(segmentedSlot)
ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
objLayer = ColortableLayer(objectssrc, ct)
objLayer.name = "Objects"
objLayer.opacity = 0.5
objLayer.visible = False
objLayer.setToolTip("Segmented objects (labeled image/connected components)")
layers.append(objLayer)
if binarySlot.ready():
#.........这里部分代码省略.........
示例11: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
layers = []
op = self.topLevelOperatorView
binct = [QColor(Qt.black), QColor(Qt.white)]
binct[0] = 0
ct = create_default_16bit()
ct[0]=0
# Show the cached output, since it goes through a blocked cache
if op.CachedOutput.ready():
outputSrc = LazyflowSource(op.CachedOutput)
outputLayer = ColortableLayer(outputSrc, ct)
outputLayer.name = "Final output"
outputLayer.visible = False
outputLayer.opacity = 1.0
outputLayer.setToolTip("Results of thresholding and size filter")
layers.append(outputLayer)
if op.InputImage.ready():
numChannels = op.InputImage.meta.getTaggedShape()['c']
for channel in range(numChannels):
channelProvider = OpSingleChannelSelector(parent=op.InputImage.getRealOperator().parent)
channelProvider.Input.connect(op.InputImage)
channelProvider.Index.setValue( channel )
channelSrc = LazyflowSource( channelProvider.Output )
inputChannelLayer = AlphaModulatedLayer( channelSrc,
tintColor=QColor(self._channelColors[channel]),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
inputChannelLayer.opacity = 0.5
inputChannelLayer.visible = True
inputChannelLayer.name = "Input Channel " + str(channel)
inputChannelLayer.setToolTip("Select input channel " + str(channel) + \
" if this prediction image contains the objects of interest.")
layers.append(inputChannelLayer)
if self._showDebug:
#FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
curIndex = self._drawer.tabWidget.currentIndex()
if curIndex==1:
if op.BigRegions.ready():
lowThresholdSrc = LazyflowSource(op.BigRegions)
lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
lowThresholdLayer.name = "After low threshold"
lowThresholdLayer.visible = False
lowThresholdLayer.opacity = 1.0
lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
layers.append(lowThresholdLayer)
if op.FilteredSmallLabels.ready():
filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
filteredSmallLabelsLayer.name = "After high threshold and size filter"
filteredSmallLabelsLayer.visible = False
filteredSmallLabelsLayer.opacity = 1.0
filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
followed by the size filter")
layers.append(filteredSmallLabelsLayer)
if op.SmallRegions.ready():
highThresholdSrc = LazyflowSource(op.SmallRegions)
highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
highThresholdLayer.name = "After high threshold"
highThresholdLayer.visible = False
highThresholdLayer.opacity = 1.0
highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
layers.append(highThresholdLayer)
elif curIndex==0:
if op.BeforeSizeFilter.ready():
thSrc = LazyflowSource(op.BeforeSizeFilter)
thLayer = ColortableLayer(thSrc, ct)
thLayer.name = "Before size filter"
thLayer.visible = False
thLayer.opacity = 1.0
thLayer.setToolTip("Results of thresholding before the size filter is applied")
layers.append(thLayer)
# Selected input channel, smoothed.
if op.Smoothed.ready():
smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
smoothedLayer.name = "Smoothed input"
smoothedLayer.visible = True
smoothedLayer.opacity = 1.0
smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
layers.append(smoothedLayer)
# Show the raw input data
rawSlot = self.topLevelOperatorView.RawInput
if rawSlot.ready():
rawLayer = self.createStandardLayerFromSlot( rawSlot )
rawLayer.name = "Raw data"
rawLayer.visible = True
rawLayer.opacity = 1.0
layers.append(rawLayer)
return layers
示例12: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self, currentImageIndex):
"""
Called by our base class when one of our data slots has changed.
This function creates a layer for each slot we want displayed in the volume editor.
"""
# Base class provides the label layer.
layers = super(PixelClassificationGui, self).setupLayers(currentImageIndex)
labels = self.labelListData
# Add the uncertainty estimate layer
uncertaintySlot = self.pipeline.UncertaintyEstimate[currentImageIndex]
if uncertaintySlot.ready():
uncertaintySrc = LazyflowSource(uncertaintySlot)
uncertaintyLayer = AlphaModulatedLayer( uncertaintySrc,
tintColor=QColor( Qt.cyan ),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
uncertaintyLayer.name = "Uncertainty"
uncertaintyLayer.visible = False
uncertaintyLayer.opacity = 1.0
uncertaintyLayer.shortcutRegistration = (
"Prediction Layers",
"Show/Hide Uncertainty",
QShortcut( QKeySequence("u"), self.viewerControlWidget(), uncertaintyLayer.toggleVisible ),
uncertaintyLayer )
layers.append(uncertaintyLayer)
# Add each of the predictions
for channel, predictionSlot in enumerate(self.pipeline.PredictionProbabilityChannels[currentImageIndex]):
if predictionSlot.ready() and channel < len(labels):
ref_label = labels[channel]
predictsrc = LazyflowSource(predictionSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=ref_label.color,
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
predictLayer.opacity = 0.25
predictLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
predictLayer.visibleChanged.connect(self.updateShowPredictionCheckbox)
def setLayerColor(c):
predictLayer.tintColor = c
def setLayerName(n):
newName = "Prediction for %s" % ref_label.name
predictLayer.name = newName
setLayerName(ref_label.name)
ref_label.colorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setLayerName)
layers.append(predictLayer)
# Add each of the segementations
for channel, segmentationSlot in enumerate(self.pipeline.SegmentationChannels[currentImageIndex]):
if segmentationSlot.ready() and channel < len(labels):
ref_label = labels[channel]
segsrc = LazyflowSource(segmentationSlot)
segLayer = AlphaModulatedLayer( segsrc,
tintColor=ref_label.color,
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
segLayer.opacity = 1
segLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
segLayer.visibleChanged.connect(self.updateShowSegmentationCheckbox)
def setLayerColor(c):
segLayer.tintColor = c
def setLayerName(n):
newName = "Segmentation (%s)" % ref_label.name
segLayer.name = newName
setLayerName(ref_label.name)
ref_label.colorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setLayerName)
layers.append(segLayer)
# Add the raw data last (on the bottom)
inputDataSlot = self.pipeline.InputImages[currentImageIndex]
if inputDataSlot.ready():
inputLayer = self.createStandardLayerFromSlot( inputDataSlot )
inputLayer.name = "Input Data"
inputLayer.visible = True
inputLayer.opacity = 1.0
def toggleTopToBottom():
index = self.layerstack.layerIndex( inputLayer )
self.layerstack.selectRow( index )
if index == 0:
self.layerstack.moveSelectedToBottom()
else:
self.layerstack.moveSelectedToTop()
inputLayer.shortcutRegistration = (
"Prediction Layers",
"Bring Input To Top/Bottom",
QShortcut( QKeySequence("i"), self.viewerControlWidget(), toggleTopToBottom),
inputLayer )
layers.append(inputLayer)
return layers
示例13: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
"""
Called by our base class when one of our data slots has changed.
This function creates a layer for each slot we want displayed in the volume editor.
"""
# Base class provides the label layer.
layers = super(PixelClassificationGui, self).setupLayers()
# Add the uncertainty estimate layer
uncertaintySlot = self.topLevelOperatorView.UncertaintyEstimate
if uncertaintySlot.ready():
uncertaintySrc = LazyflowSource(uncertaintySlot)
uncertaintyLayer = AlphaModulatedLayer( uncertaintySrc,
tintColor=QColor( Qt.cyan ),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
uncertaintyLayer.name = "Uncertainty"
uncertaintyLayer.visible = False
uncertaintyLayer.opacity = 1.0
uncertaintyLayer.shortcutRegistration = (
"Prediction Layers",
"Show/Hide Uncertainty",
QShortcut( QKeySequence("u"), self.viewerControlWidget(), uncertaintyLayer.toggleVisible ),
uncertaintyLayer )
layers.append(uncertaintyLayer)
labels = self.labelListData
# Add each of the segmentations
for channel, segmentationSlot in enumerate(self.topLevelOperatorView.SegmentationChannels):
if segmentationSlot.ready() and channel < len(labels):
ref_label = labels[channel]
segsrc = LazyflowSource(segmentationSlot)
segLayer = AlphaModulatedLayer( segsrc,
tintColor=ref_label.pmapColor(),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
segLayer.opacity = 1
segLayer.visible = False #self.labelingDrawerUi.liveUpdateButton.isChecked()
segLayer.visibleChanged.connect(self.updateShowSegmentationCheckbox)
def setLayerColor(c, segLayer=segLayer):
segLayer.tintColor = c
self._update_rendering()
def setSegLayerName(n, segLayer=segLayer):
oldname = segLayer.name
newName = "Segmentation (%s)" % n
segLayer.name = newName
if not self.render:
return
if oldname in self._renderedLayers:
label = self._renderedLayers.pop(oldname)
self._renderedLayers[newName] = label
setSegLayerName(ref_label.name)
ref_label.pmapColorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setSegLayerName)
#check if layer is 3d before adding the "Toggle 3D" option
#this check is done this way to match the VolumeRenderer, in
#case different 3d-axistags should be rendered like t-x-y
#_axiskeys = segmentationSlot.meta.getAxisKeys()
if len(segmentationSlot.meta.shape) == 4:
#the Renderer will cut out the last shape-dimension, so
#we're checking for 4 dimensions
self._setup_contexts(segLayer)
layers.append(segLayer)
# Add each of the predictions
for channel, predictionSlot in enumerate(self.topLevelOperatorView.PredictionProbabilityChannels):
if predictionSlot.ready() and channel < len(labels):
ref_label = labels[channel]
predictsrc = LazyflowSource(predictionSlot)
predictLayer = AlphaModulatedLayer( predictsrc,
tintColor=ref_label.pmapColor(),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
predictLayer.opacity = 0.25
predictLayer.visible = self.labelingDrawerUi.liveUpdateButton.isChecked()
predictLayer.visibleChanged.connect(self.updateShowPredictionCheckbox)
def setLayerColor(c, predictLayer=predictLayer):
predictLayer.tintColor = c
def setPredLayerName(n, predictLayer=predictLayer):
newName = "Prediction for %s" % n
predictLayer.name = newName
setPredLayerName(ref_label.name)
ref_label.pmapColorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setPredLayerName)
layers.append(predictLayer)
# Add the raw data last (on the bottom)
inputDataSlot = self.topLevelOperatorView.InputImages
if inputDataSlot.ready():
inputLayer = self.createStandardLayerFromSlot( inputDataSlot )
inputLayer.name = "Input Data"
#.........这里部分代码省略.........
示例14: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
layers = []
opLane = self.topLevelOperatorView
# This code depends on a specific order for the export slots.
# If those change, update this function!
selection_names = opLane.SelectionNames.value
assert selection_names[0:4] == ['Probabilities', 'Simple Segmentation', 'Uncertainty', 'Features'] # see comment above
selection = selection_names[ opLane.InputSelection.value ]
if selection == 'Probabilities':
exportedLayers = self._initPredictionLayers(opLane.ImageOnDisk)
for layer in exportedLayers:
layer.visible = True
layer.name = layer.name + "- Exported"
layers += exportedLayers
previewLayers = self._initPredictionLayers(opLane.ImageToExport)
for layer in previewLayers:
layer.visible = False
layer.name = layer.name + "- Preview"
layers += previewLayers
elif selection == "Simple Segmentation":
exportedLayer = self._initSegmentationlayer(opLane.ImageOnDisk)
if exportedLayer:
exportedLayer.visible = True
exportedLayer.name = exportedLayer.name + " - Exported"
layers.append( exportedLayer )
previewLayer = self._initSegmentationlayer(opLane.ImageToExport)
if previewLayer:
previewLayer.visible = False
previewLayer.name = previewLayer.name + " - Preview"
layers.append( previewLayer )
elif selection == "Uncertainty":
if opLane.ImageToExport.ready():
previewUncertaintySource = LazyflowSource(opLane.ImageToExport)
previewLayer = AlphaModulatedLayer( previewUncertaintySource,
tintColor=QColor(0,255,255), # cyan
range=(0.0, 1.0),
normalize=(0.0,1.0) )
previewLayer.opacity = 0.5
previewLayer.visible = False
previewLayer.name = "Uncertainty - Preview"
layers.append(previewLayer)
if opLane.ImageOnDisk.ready():
exportedUncertaintySource = LazyflowSource(opLane.ImageOnDisk)
exportedLayer = AlphaModulatedLayer( exportedUncertaintySource,
tintColor=QColor(0,255,255), # cyan
range=(0.0, 1.0),
normalize=(0.0,1.0) )
exportedLayer.opacity = 0.5
exportedLayer.visible = True
exportedLayer.name = "Uncertainty - Exported"
layers.append(exportedLayer)
else: # Features and all other layers.
if selection != "Features":
warnings.warn("Not sure how to display '{}' result. Showing with default layer settings."
.format(selection))
if opLane.ImageToExport.ready():
previewLayer = self.createStandardLayerFromSlot( opLane.ImageToExport )
previewLayer.visible = False
previewLayer.name = "{} - Preview".format( selection )
previewLayer.set_normalize( 0, None )
layers.append(previewLayer)
if opLane.ImageOnDisk.ready():
exportedLayer = self.createStandardLayerFromSlot( opLane.ImageOnDisk )
exportedLayer.visible = True
exportedLayer.name = "{} - Exported".format( selection )
exportedLayer.set_normalize( 0, None )
layers.append(exportedLayer)
# If available, also show the raw data layer
rawSlot = opLane.FormattedRawData
if rawSlot.ready():
rawLayer = self.createStandardLayerFromSlot( rawSlot )
rawLayer.name = "Raw Data"
rawLayer.visible = True
rawLayer.opacity = 1.0
layers.append( rawLayer )
return layers
示例15: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import visible [as 别名]
def setupLayers(self):
layers = []
op = self.topLevelOperatorView
# Show the cached output, since it goes through a blocked cache
if op.CachedOutput.ready():
outputLayer = self.createStandardLayerFromSlot( op.CachedOutput )
outputLayer.name = "Output (Cached)"
outputLayer.visible = False
outputLayer.opacity = 1.0
layers.append(outputLayer)
if op.BigRegions.ready():
lowThresholdLayer = self.createStandardLayerFromSlot( op.BigRegions )
lowThresholdLayer.name = "Big Regions"
lowThresholdLayer.visible = False
lowThresholdLayer.opacity = 1.0
layers.append(lowThresholdLayer)
if op.FilteredSmallLabels.ready():
filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels, lastChannelIsAlpha=True )
filteredSmallLabelsLayer.name = "Filtered Small Labels"
filteredSmallLabelsLayer.visible = False
filteredSmallLabelsLayer.opacity = 1.0
layers.append(filteredSmallLabelsLayer)
if op.SmallRegions.ready():
lowThresholdLayer = self.createStandardLayerFromSlot( op.SmallRegions )
lowThresholdLayer.name = "Small Regions"
lowThresholdLayer.visible = False
lowThresholdLayer.opacity = 1.0
layers.append(lowThresholdLayer)
# Selected input channel, smoothed.
if op.Smoothed.ready():
smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
smoothedLayer.name = "Smoothed Input"
smoothedLayer.visible = True
smoothedLayer.opacity = 1.0
layers.append(smoothedLayer)
# Show each input channel as a separate layer
for channelIndex, channelSlot in enumerate(op.InputChannels):
if op.InputChannels.ready():
drange = channelSlot.meta.drange
if drange is None:
drange = (0.0, 1.0)
channelSrc = LazyflowSource(channelSlot)
channelLayer = AlphaModulatedLayer( channelSrc,
tintColor=QColor(self._channelColors[channelIndex]),
range=drange,
normalize=drange )
channelLayer.name = "Input Ch{}".format(channelIndex)
channelLayer.opacity = 1.0
channelLayer.visible = channelIndex == op.Channel.value # By default, only the selected input channel is visible.
layers.append(channelLayer)
# Show the raw input data
rawSlot = self.topLevelOperatorView.RawInput
if rawSlot.ready():
rawLayer = self.createStandardLayerFromSlot( rawSlot )
rawLayer.name = "Raw Data"
rawLayer.visible = True
rawLayer.opacity = 1.0
layers.append(rawLayer)
return layers