本文整理汇总了Python中volumina.api.AlphaModulatedLayer.setToolTip方法的典型用法代码示例。如果您正苦于以下问题:Python AlphaModulatedLayer.setToolTip方法的具体用法?Python AlphaModulatedLayer.setToolTip怎么用?Python AlphaModulatedLayer.setToolTip使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类volumina.api.AlphaModulatedLayer
的用法示例。
在下文中一共展示了AlphaModulatedLayer.setToolTip方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import setToolTip [as 别名]
def setupLayers(self):
# Base class provides the label layer.
layers = super(ObjectClassificationGui, self).setupLayers()
binarySlot = self.op.BinaryImages
segmentedSlot = self.op.SegmentationImages
rawSlot = self.op.RawImages
#This is just for colors
labels = self.labelListData
for channel, probSlot in enumerate(self.op.PredictionProbabilityChannels):
if probSlot.ready() and channel < len(labels):
ref_label = labels[channel]
probsrc = LazyflowSource(probSlot)
probLayer = AlphaModulatedLayer( probsrc,
tintColor=ref_label.pmapColor(),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
probLayer.opacity = 0.25
#probLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
#False, because it's much faster to draw predictions without these layers below
probLayer.visible = False
probLayer.setToolTip("Probability that the object belongs to class {}".format(channel+1))
def setLayerColor(c, predictLayer_=probLayer, ch=channel, initializing=False):
if not initializing and predictLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
predictLayer_.tintColor = c
def setLayerName(n, predictLayer_=probLayer, initializing=False):
if not initializing and predictLayer_ not in self.layerstack:
# This layer has been removed from the layerstack already.
# Don't touch it.
return
newName = "Prediction for %s" % n
predictLayer_.name = newName
setLayerName(ref_label.name, initializing=True)
ref_label.pmapColorChanged.connect(setLayerColor)
ref_label.nameChanged.connect(setLayerName)
layers.append(probLayer)
predictionSlot = self.op.PredictionImages
if predictionSlot.ready():
predictsrc = LazyflowSource(predictionSlot)
self._colorTable16_forpmaps[0] = 0
predictLayer = ColortableLayer(predictsrc,
colorTable=self._colorTable16_forpmaps)
predictLayer.name = self.PREDICTION_LAYER_NAME
predictLayer.ref_object = None
predictLayer.visible = self.labelingDrawerUi.checkInteractive.isChecked()
predictLayer.opacity = 0.5
predictLayer.setToolTip("Classification results, assigning a label to each object")
# This weakref stuff is a little more fancy than strictly necessary.
# The idea is to use the weakref's callback to determine when this layer instance is destroyed by the garbage collector,
# and then we disconnect the signal that updates that layer.
weak_predictLayer = weakref.ref( predictLayer )
colortable_changed_callback = bind( self._setPredictionColorTable, weak_predictLayer )
self._labelControlUi.labelListModel.dataChanged.connect( colortable_changed_callback )
weak_predictLayer2 = weakref.ref( predictLayer, partial(self._disconnect_dataChange_callback, colortable_changed_callback) )
# We have to make sure the weakref isn't destroyed because it is responsible for calling the callback.
# Therefore, we retain it by adding it to a list.
self._retained_weakrefs.append( weak_predictLayer2 )
# Ensure we're up-to-date (in case this is the first time the prediction layer is being added.
for row in range( self._labelControlUi.labelListModel.rowCount() ):
self._setPredictionColorTableForRow( predictLayer, row )
# put right after Labels, so that it is visible after hitting "live
# predict".
layers.insert(1, predictLayer)
badObjectsSlot = self.op.BadObjectImages
if badObjectsSlot.ready():
ct_black = [0, QColor(Qt.black).rgba()]
badSrc = LazyflowSource(badObjectsSlot)
badLayer = ColortableLayer(badSrc, colorTable = ct_black)
badLayer.name = "Ambiguous objects"
badLayer.setToolTip("Objects with infinite or invalid values in features")
badLayer.visible = False
layers.append(badLayer)
if segmentedSlot.ready():
ct = colortables.create_default_16bit()
objectssrc = LazyflowSource(segmentedSlot)
ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
objLayer = ColortableLayer(objectssrc, ct)
objLayer.name = "Objects"
objLayer.opacity = 0.5
objLayer.visible = False
objLayer.setToolTip("Segmented objects (labeled image/connected components)")
layers.append(objLayer)
if binarySlot.ready():
#.........这里部分代码省略.........
示例2: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import setToolTip [as 别名]
def setupLayers(self):
layers = []
op = self.topLevelOperatorView
binct = [QColor(Qt.black), QColor(Qt.white)]
binct[0] = 0
ct = self._createDefault16ColorColorTable()
ct[0]=0
# Show the cached output, since it goes through a blocked cache
if op.CachedOutput.ready():
outputSrc = LazyflowSource(op.CachedOutput)
outputLayer = ColortableLayer(outputSrc, binct)
outputLayer.name = "Final output"
outputLayer.visible = False
outputLayer.opacity = 1.0
outputLayer.setToolTip("Results of thresholding and size filter")
layers.append(outputLayer)
if self._showDebug:
#FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
curIndex = self._drawer.tabWidget.currentIndex()
if curIndex==1:
if op.BigRegions.ready():
lowThresholdSrc = LazyflowSource(op.BigRegions)
lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
lowThresholdLayer.name = "After low threshold"
lowThresholdLayer.visible = False
lowThresholdLayer.opacity = 1.0
lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
layers.append(lowThresholdLayer)
if op.FilteredSmallLabels.ready():
filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
filteredSmallLabelsLayer.name = "After high threshold and size filter"
filteredSmallLabelsLayer.visible = False
filteredSmallLabelsLayer.opacity = 1.0
filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
followed by the size filter")
layers.append(filteredSmallLabelsLayer)
if op.SmallRegions.ready():
highThresholdSrc = LazyflowSource(op.SmallRegions)
highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
highThresholdLayer.name = "After high threshold"
highThresholdLayer.visible = False
highThresholdLayer.opacity = 1.0
highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
layers.append(highThresholdLayer)
elif curIndex==0:
if op.BeforeSizeFilter.ready():
thSrc = LazyflowSource(op.BeforeSizeFilter)
thLayer = ColortableLayer(thSrc, ct)
thLayer.name = "Before size filter"
thLayer.visible = False
thLayer.opacity = 1.0
thLayer.setToolTip("Results of thresholding before the size filter is applied")
layers.append(thLayer)
# Selected input channel, smoothed.
if op.Smoothed.ready():
smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
smoothedLayer.name = "Smoothed input"
smoothedLayer.visible = True
smoothedLayer.opacity = 1.0
smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
layers.append(smoothedLayer)
# Show the selected channel
if op.InputChannel.ready():
drange = op.InputChannel.meta.drange
if drange is None:
drange = (0.0, 1.0)
channelSrc = LazyflowSource(op.InputChannel)
#channelLayer = AlphaModulatedLayer( channelSrc,
# tintColor=QColor(self._channelColors[op.Channel.value]),
# range=drange,
# normalize=drange )
#it used to be set to the label color, but people found it confusing
channelLayer = AlphaModulatedLayer( channelSrc, tintColor = QColor(Qt.white), range = drange, normalize=drange)
channelLayer.name = "Selected input channel"
channelLayer.opacity = 1.0
channelLayer.setToolTip("The selected channel of the prediction images")
#channelLayer.visible = channelIndex == op.Channel.value # By default, only the selected input channel is visible.
layers.append(channelLayer)
# Show the raw input data
rawSlot = self.topLevelOperatorView.RawInput
if rawSlot.ready():
rawLayer = self.createStandardLayerFromSlot( rawSlot )
rawLayer.name = "Raw data"
rawLayer.visible = True
rawLayer.opacity = 1.0
layers.append(rawLayer)
return layers
示例3: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import setToolTip [as 别名]
def setupLayers(self):
layers = []
op = self.topLevelOperatorView
binct = [QColor(Qt.black), QColor(Qt.white)]
binct[0] = 0
ct = create_default_16bit()
ct[0]=0
# Show the cached output, since it goes through a blocked cache
if op.CachedOutput.ready():
outputSrc = LazyflowSource(op.CachedOutput)
outputLayer = ColortableLayer(outputSrc, ct)
outputLayer.name = "Final output"
outputLayer.visible = False
outputLayer.opacity = 1.0
outputLayer.setToolTip("Results of thresholding and size filter")
layers.append(outputLayer)
if op.InputImage.ready():
numChannels = op.InputImage.meta.getTaggedShape()['c']
for channel in range(numChannels):
channelProvider = OpSingleChannelSelector(parent=op.InputImage.getRealOperator().parent)
channelProvider.Input.connect(op.InputImage)
channelProvider.Index.setValue( channel )
channelSrc = LazyflowSource( channelProvider.Output )
inputChannelLayer = AlphaModulatedLayer( channelSrc,
tintColor=QColor(self._channelColors[channel]),
range=(0.0, 1.0),
normalize=(0.0, 1.0) )
inputChannelLayer.opacity = 0.5
inputChannelLayer.visible = True
inputChannelLayer.name = "Input Channel " + str(channel)
inputChannelLayer.setToolTip("Select input channel " + str(channel) + \
" if this prediction image contains the objects of interest.")
layers.append(inputChannelLayer)
if self._showDebug:
#FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
curIndex = self._drawer.tabWidget.currentIndex()
if curIndex==1:
if op.BigRegions.ready():
lowThresholdSrc = LazyflowSource(op.BigRegions)
lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
lowThresholdLayer.name = "After low threshold"
lowThresholdLayer.visible = False
lowThresholdLayer.opacity = 1.0
lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
layers.append(lowThresholdLayer)
if op.FilteredSmallLabels.ready():
filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
filteredSmallLabelsLayer.name = "After high threshold and size filter"
filteredSmallLabelsLayer.visible = False
filteredSmallLabelsLayer.opacity = 1.0
filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
followed by the size filter")
layers.append(filteredSmallLabelsLayer)
if op.SmallRegions.ready():
highThresholdSrc = LazyflowSource(op.SmallRegions)
highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
highThresholdLayer.name = "After high threshold"
highThresholdLayer.visible = False
highThresholdLayer.opacity = 1.0
highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
layers.append(highThresholdLayer)
elif curIndex==0:
if op.BeforeSizeFilter.ready():
thSrc = LazyflowSource(op.BeforeSizeFilter)
thLayer = ColortableLayer(thSrc, ct)
thLayer.name = "Before size filter"
thLayer.visible = False
thLayer.opacity = 1.0
thLayer.setToolTip("Results of thresholding before the size filter is applied")
layers.append(thLayer)
# Selected input channel, smoothed.
if op.Smoothed.ready():
smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
smoothedLayer.name = "Smoothed input"
smoothedLayer.visible = True
smoothedLayer.opacity = 1.0
smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
layers.append(smoothedLayer)
# Show the raw input data
rawSlot = self.topLevelOperatorView.RawInput
if rawSlot.ready():
rawLayer = self.createStandardLayerFromSlot( rawSlot )
rawLayer.name = "Raw data"
rawLayer.visible = True
rawLayer.opacity = 1.0
layers.append(rawLayer)
return layers
示例4: setupLayers
# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import setToolTip [as 别名]
def setupLayers(self):
layers = []
op = self.topLevelOperatorView
binct = [QColor(Qt.black), QColor(Qt.white)]
binct[0] = 0
ct = create_default_16bit()
ct[0] = 0
# Show the cached output, since it goes through a blocked cache
if op.CachedOutput.ready():
outputSrc = LazyflowSource(op.CachedOutput)
outputLayer = ColortableLayer(outputSrc, ct)
outputLayer.name = "Final output"
outputLayer.visible = False
outputLayer.opacity = 1.0
outputLayer.setToolTip("Results of thresholding and size filter")
layers.append(outputLayer)
if op.InputChannelColors.ready():
input_channel_colors = [QColor(r_g_b1[0],r_g_b1[1],r_g_b1[2]) for r_g_b1 in op.InputChannelColors.value]
else:
input_channel_colors = list(map(QColor, self._defaultInputChannelColors))
for channel, channelProvider in enumerate(self._channelProviders):
slot_drange = channelProvider.Output.meta.drange
if slot_drange is not None:
drange = slot_drange
else:
drange = (0.0, 1.0)
channelSrc = LazyflowSource(channelProvider.Output)
inputChannelLayer = AlphaModulatedLayer(
channelSrc, tintColor=input_channel_colors[channel],
range=drange, normalize=drange)
inputChannelLayer.opacity = 0.5
inputChannelLayer.visible = True
inputChannelLayer.name = "Input Channel " + str(channel)
inputChannelLayer.setToolTip("Select input channel " + str(channel) + \
" if this prediction image contains the objects of interest.")
layers.append(inputChannelLayer)
if self._showDebug:
#FIXME: We have to do that, because lazyflow doesn't have a way to make an operator partially ready
curIndex = op.CurOperator.value
if curIndex==1:
if op.BigRegions.ready():
lowThresholdSrc = LazyflowSource(op.BigRegions)
lowThresholdLayer = ColortableLayer(lowThresholdSrc, binct)
lowThresholdLayer.name = "After low threshold"
lowThresholdLayer.visible = False
lowThresholdLayer.opacity = 1.0
lowThresholdLayer.setToolTip("Results of thresholding with the low pixel value threshold")
layers.append(lowThresholdLayer)
if op.FilteredSmallLabels.ready():
filteredSmallLabelsSrc = LazyflowSource(op.FilteredSmallLabels)
#filteredSmallLabelsLayer = self.createStandardLayerFromSlot( op.FilteredSmallLabels )
filteredSmallLabelsLayer = ColortableLayer(filteredSmallLabelsSrc, binct)
filteredSmallLabelsLayer.name = "After high threshold and size filter"
filteredSmallLabelsLayer.visible = False
filteredSmallLabelsLayer.opacity = 1.0
filteredSmallLabelsLayer.setToolTip("Results of thresholding with the high pixel value threshold,\
followed by the size filter")
layers.append(filteredSmallLabelsLayer)
if op.SmallRegions.ready():
highThresholdSrc = LazyflowSource(op.SmallRegions)
highThresholdLayer = ColortableLayer(highThresholdSrc, binct)
highThresholdLayer.name = "After high threshold"
highThresholdLayer.visible = False
highThresholdLayer.opacity = 1.0
highThresholdLayer.setToolTip("Results of thresholding with the high pixel value threshold")
layers.append(highThresholdLayer)
elif curIndex==0:
if op.BeforeSizeFilter.ready():
thSrc = LazyflowSource(op.BeforeSizeFilter)
thLayer = ColortableLayer(thSrc, ct)
thLayer.name = "Before size filter"
thLayer.visible = False
thLayer.opacity = 1.0
thLayer.setToolTip("Results of thresholding before the size filter is applied")
layers.append(thLayer)
# Selected input channel, smoothed.
if op.Smoothed.ready():
smoothedLayer = self.createStandardLayerFromSlot( op.Smoothed )
smoothedLayer.name = "Smoothed input"
smoothedLayer.visible = True
smoothedLayer.opacity = 1.0
smoothedLayer.setToolTip("Selected channel data, smoothed with a Gaussian with user-defined sigma")
layers.append(smoothedLayer)
# Show the raw input data
rawSlot = self.topLevelOperatorView.RawInput
if rawSlot.ready():
rawLayer = self.createStandardLayerFromSlot( rawSlot )
rawLayer.name = "Raw data"
rawLayer.visible = True
rawLayer.opacity = 1.0
layers.append(rawLayer)
#.........这里部分代码省略.........