当前位置: 首页>>代码示例>>Python>>正文


Python AlphaModulatedLayer.set_normalize方法代码示例

本文整理汇总了Python中volumina.api.AlphaModulatedLayer.set_normalize方法的典型用法代码示例。如果您正苦于以下问题:Python AlphaModulatedLayer.set_normalize方法的具体用法?Python AlphaModulatedLayer.set_normalize怎么用?Python AlphaModulatedLayer.set_normalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在volumina.api.AlphaModulatedLayer的用法示例。


在下文中一共展示了AlphaModulatedLayer.set_normalize方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setupLayers

# 需要导入模块: from volumina.api import AlphaModulatedLayer [as 别名]
# 或者: from volumina.api.AlphaModulatedLayer import set_normalize [as 别名]
    def setupLayers(self):
        layers = []
        opLane = self.topLevelOperatorView

        # This code depends on a specific order for the export slots.
        # If those change, update this function!
        selection_names = opLane.SelectionNames.value
        assert selection_names[0:4] == ['Probabilities', 'Simple Segmentation', 'Uncertainty', 'Features'] # see comment above
        
        selection = selection_names[ opLane.InputSelection.value ]

        if selection == 'Probabilities':
            exportedLayers = self._initPredictionLayers(opLane.ImageOnDisk)
            for layer in exportedLayers:
                layer.visible = True
                layer.name = layer.name + "- Exported"
            layers += exportedLayers
            
            previewLayers = self._initPredictionLayers(opLane.ImageToExport)
            for layer in previewLayers:
                layer.visible = False
                layer.name = layer.name + "- Preview"
            layers += previewLayers

        elif selection == "Simple Segmentation":
            exportedLayer = self._initSegmentationlayer(opLane.ImageOnDisk)
            if exportedLayer:
                exportedLayer.visible = True
                exportedLayer.name = exportedLayer.name + " - Exported"
                layers.append( exportedLayer )

            previewLayer = self._initSegmentationlayer(opLane.ImageToExport)
            if previewLayer:
                previewLayer.visible = False
                previewLayer.name = previewLayer.name + " - Preview"
                layers.append( previewLayer )

        elif selection == "Uncertainty":
            if opLane.ImageToExport.ready():
                previewUncertaintySource = LazyflowSource(opLane.ImageToExport)
                previewLayer = AlphaModulatedLayer( previewUncertaintySource,
                                                    tintColor=QColor(0,255,255), # cyan
                                                    range=(0.0, 1.0),
                                                    normalize=(0.0,1.0) )
                previewLayer.opacity = 0.5
                previewLayer.visible = False
                previewLayer.name = "Uncertainty - Preview"
                layers.append(previewLayer)
            if opLane.ImageOnDisk.ready():
                exportedUncertaintySource = LazyflowSource(opLane.ImageOnDisk)
                exportedLayer = AlphaModulatedLayer( exportedUncertaintySource,
                                                     tintColor=QColor(0,255,255), # cyan
                                                     range=(0.0, 1.0),
                                                     normalize=(0.0,1.0) )
                exportedLayer.opacity = 0.5
                exportedLayer.visible = True
                exportedLayer.name = "Uncertainty - Exported"
                layers.append(exportedLayer)

        else: # Features and all other layers.
            if selection != "Features":
                warnings.warn("Not sure how to display '{}' result.  Showing with default layer settings."
                              .format(selection))

            if opLane.ImageToExport.ready():
                previewLayer = self.createStandardLayerFromSlot( opLane.ImageToExport )
                previewLayer.visible = False
                previewLayer.name = "{} - Preview".format( selection )
                previewLayer.set_normalize( 0, None )
                layers.append(previewLayer)
            if opLane.ImageOnDisk.ready():
                exportedLayer = self.createStandardLayerFromSlot( opLane.ImageOnDisk )
                exportedLayer.visible = True
                exportedLayer.name = "{} - Exported".format( selection )
                exportedLayer.set_normalize( 0, None )
                layers.append(exportedLayer)

        # If available, also show the raw data layer
        rawSlot = opLane.FormattedRawData
        if rawSlot.ready():
            rawLayer = self.createStandardLayerFromSlot( rawSlot )
            rawLayer.name = "Raw Data"
            rawLayer.visible = True
            rawLayer.opacity = 1.0
            layers.append( rawLayer )

        return layers 
开发者ID:sc65,项目名称:ilastik,代码行数:89,代码来源:pixelClassificationDataExportGui.py


注:本文中的volumina.api.AlphaModulatedLayer.set_normalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。