当前位置: 首页>>代码示例>>Python>>正文


Python Util.featureNormalize方法代码示例

本文整理汇总了Python中util.Util.featureNormalize方法的典型用法代码示例。如果您正苦于以下问题:Python Util.featureNormalize方法的具体用法?Python Util.featureNormalize怎么用?Python Util.featureNormalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在util.Util的用法示例。


在下文中一共展示了Util.featureNormalize方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: partExtra

# 需要导入模块: from util import Util [as 别名]
# 或者: from util.Util import featureNormalize [as 别名]
def partExtra():
	A = scipy.misc.imread( "/Users/saburookita/Downloads/mlclass-ex7-004/mlclass-ex7/bird_small.png" )
	A 			= A / 255.0
	img_size 	= shape( A )

	X = A.reshape( img_size[0] * img_size[1], 3 )
	K = 16
	max_iters = 10


	initial_centroids = kMeansInitCentroids( X, K )
	centroids, idx = runkMeans( X, initial_centroids, max_iters )


	fig = pyplot.figure()
	# axis = fig.add_subplot( 111, projection='3d' )
	# axis.scatter( X[:1000, 0], X[:1000, 1], X[:1000, 2], c=idx[:1000], marker='o' )
	# pyplot.show(block=True)

	X_norm, mu, sigma = Util.featureNormalize( X )

	U, S = pca( X_norm )
	Z = projectData( X_norm, U, 2 )
	axis.scatter( Z[:100, 0], Z[:100, 1], c='r', marker='o' )
	pyplot.show(block=True)
开发者ID:mono0926,项目名称:mlclass,代码行数:27,代码来源:ex7_pca.py

示例2: part2_4

# 需要导入模块: from util import Util [as 别名]
# 或者: from util.Util import featureNormalize [as 别名]
def part2_4():
	mat = scipy.io.loadmat( "/Users/saburookita/Downloads/mlclass-ex7-004/mlclass-ex7/ex7faces.mat" )
	X = mat['X']

	# displayData( X[:100, :] )

	X_norm, mu, sigma = Util.featureNormalize( X )

	U, S = pca( X_norm )
	# displayData( U[:, :36].T )

	K = 100
	Z = projectData( X_norm, U, K )
	X_rec = recoverData( Z, U, K )

	pyplot.subplot( 1, 2, 1 )
	displayData( X_norm[:100, :] )
	pyplot.subplot( 1, 2, 2 )
	displayData( X_rec[:100, :] )
	pyplot.show( block=True )
开发者ID:mono0926,项目名称:mlclass,代码行数:22,代码来源:ex7_pca.py

示例3: part2_3

# 需要导入模块: from util import Util [as 别名]
# 或者: from util.Util import featureNormalize [as 别名]
def part2_3():
	mat = scipy.io.loadmat( "/Users/saburookita/Downloads/mlclass-ex7-004/mlclass-ex7/ex7data1.mat" )
	X = mat['X']

	X_norm, mu, sigma = Util.featureNormalize( X )
	U, S = pca( X_norm )

	K = 1
	Z = projectData( X_norm, U, K )
	print(Z[0]) # Should be 1.481

	X_rec = recoverData( Z, U, K )

	for i in range( 0, shape( X_rec)[0] ):
		pyplot.gca().add_line( lines.Line2D( xdata=[X_norm[i,0], X_rec[i,0]], ydata=[X_norm[i,1], X_rec[i,1]], c='g', lw=1, ls='--' ) )	

	pyplot.plot( X_norm[:, 0], X_norm[:, 1], 'bo' )
	pyplot.plot( X_rec[:, 0], X_rec[:, 1], 'ro' )	
	
	pyplot.axis( 'equal' )
	pyplot.axis( [-4, 3, -4, 3] )

	pyplot.show( block=True )
开发者ID:mono0926,项目名称:mlclass,代码行数:25,代码来源:ex7_pca.py

示例4: part2_2

# 需要导入模块: from util import Util [as 别名]
# 或者: from util.Util import featureNormalize [as 别名]
def part2_2():
	mat = scipy.io.loadmat( "/Users/saburookita/Downloads/mlclass-ex7-004/mlclass-ex7/ex7data1.mat" )
	X = mat['X']

	X_norm, mu, sigma = Util.featureNormalize( X )
	U, S = pca( X_norm )


	error = 1 - (sum( S[:1]) / sum( S))
	print(error)

	mu = mu.reshape( 1, 2)[0]
	mu_1 = mu + 1.5 * S[0] * U[:, 0]
	mu_2 = mu + 1.5 * S[1] * U[:, 1]


	pyplot.plot( X[:, 0], X[:, 1], 'bo' )

	pyplot.gca().add_line( lines.Line2D( xdata=[mu[0], mu_1[0]], ydata=[mu[1], mu_1[1]], c='r', lw=2 ) )	
	pyplot.gca().add_line( lines.Line2D( xdata=[mu[0], mu_2[0]], ydata=[mu[1], mu_2[1]], c='r', lw=2 ) )	
	pyplot.axis( [0.5, 6.5, 2, 8] )
	pyplot.axis( 'equal' )

	pyplot.show( block=True )
开发者ID:mono0926,项目名称:mlclass,代码行数:26,代码来源:ex7_pca.py


注:本文中的util.Util.featureNormalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。