当前位置: 首页>>代码示例>>Python>>正文


Python Util.get_files方法代码示例

本文整理汇总了Python中util.Util.get_files方法的典型用法代码示例。如果您正苦于以下问题:Python Util.get_files方法的具体用法?Python Util.get_files怎么用?Python Util.get_files使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在util.Util的用法示例。


在下文中一共展示了Util.get_files方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: frames2batch

# 需要导入模块: from util import Util [as 别名]
# 或者: from util.Util import get_files [as 别名]
 def frames2batch(k = 12,batch_size = 1024, is_calib = False):
     pos = util.get_files(rootdir = 'F:\\train_data\\pos\\')
     neg = util.get_files(rootdir = 'F:\\train_data\\neg\\')
     pos = shuffle(pos)
     neg = shuffle(neg)
     total = pos + neg
     total  = shuffle(total)
     batch = []
     c = 0
     bpath = 'F:\\train_data\\batch\\'
     for item_path in total:
         
         frame = fr.get_frame(item_path)
         frame_r = fr.resize_frame(frame,(k,k))
         if frame_r == None:
             continue
         vec = fr.frame_to_vect(frame_r)
         label = 1 if item_path.split('\\')[-1].find('pos') > 0 else 0
         print(item_path,label)
         batch.append((vec,label))
         if len(batch) > 0 and len(batch) % batch_size == 0:
             batch = sp.array(batch)
             sp.savez(bpath + str(c) + '_' + str(k) + ('_' if not is_calib else '_calib-')  + 'net',batch)
             batch = []
             
             c += 1
     if len(batch) > 0 and len(batch) % batch_size == 0:
         batch = sp.array(batch)
         sp.savez(bpath + str(c) + '_' + str(k) + ('_' if not is_calib else '_calib')  + '-net',batch)
         batch = []
         c += 1
开发者ID:gogolgrind,项目名称:Cascade-CNN-Face-Detection,代码行数:33,代码来源:datasets.py

示例2: train_on_hdd

# 需要导入模块: from util import Util [as 别名]
# 或者: from util.Util import get_files [as 别名]
    def train_on_hdd(self,rootdir = '12-net/'):
        print(self.nn_name,'training  start...','data folder',rootdir)
        mean_acc = 0
        total_time = 0
        bpaths = util.get_files(rootdir = rootdir,fexpr = '*.npz')
        m = len(bpaths)
        r = len(util.load_from_npz(bpaths [-1]))
        total_len = m * len(util.load_from_npz(bpaths [0]))
        print('data input size is around',total_len)
        for epoch in range(self.max_epochs):
            self.eta.set_value(self.l_rates[epoch])
            t_loss = 0
            start = time()
            for bpath in bpaths:
                batch = util.load_from_npz(bpath)
                items,labels = batch[:,0],batch[:,1]
                items = sp.array([e.astype(sp.float32) for e in items])
                labels = labels.astype(sp.int32)
				
                X_train, X_val, y_train, y_val = train_test_split(items,labels,test_size = 0.25)
				
                t_loss += self.__train_fn__ (X_train,y_train)
                val_acc = 0
                val_batches = 0 
                for xval,yval  in self.iterate_minibatches(X_val,y_val,16):
                    err, acc = self.__val_fn__(xval, yval) 
                    val_acc += acc
                    val_batches += 1
					
            if self.verbose:
                dur = time() - start
                a0 = 100*(val_acc/val_batches)
                mean_acc += a0
                total_time += dur
                print("epoch %d out of %d \t loss %g \t  acсuracy  %g \t time %d s \t" % (epoch + 1,self.max_epochs, t_loss / (total_len),a0,dur))
        m = (total_time)//60
        s = total_time - 60 * m 
        h =  m//60
        m = m - 60 * h
        mean_acc = mean_acc / self.max_epochs
        print('Training  end with total time %d h %d m %d s and mean accouracy over epochs %g' % (h,m,s,mean_acc))
开发者ID:gogolgrind,项目名称:Cascade-CNN-Face-Detection,代码行数:43,代码来源:cnn_cascade_lasagne.py


注:本文中的util.Util.get_files方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。