当前位置: 首页>>代码示例>>Python>>正文


Python LongTensor.sum方法代码示例

本文整理汇总了Python中torch.LongTensor.sum方法的典型用法代码示例。如果您正苦于以下问题:Python LongTensor.sum方法的具体用法?Python LongTensor.sum怎么用?Python LongTensor.sum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.LongTensor的用法示例。


在下文中一共展示了LongTensor.sum方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _joint_likelihood

# 需要导入模块: from torch import LongTensor [as 别名]
# 或者: from torch.LongTensor import sum [as 别名]
    def _joint_likelihood(self,
                          logits: torch.Tensor,
                          tags: torch.Tensor,
                          mask: torch.LongTensor) -> torch.Tensor:
        """
        Computes the numerator term for the log-likelihood, which is just score(inputs, tags)
        """
        batch_size, sequence_length, num_tags = logits.data.shape

        # Transpose batch size and sequence dimensions:
        logits = logits.transpose(0, 1).contiguous()
        mask = mask.float().transpose(0, 1).contiguous()
        tags = tags.transpose(0, 1).contiguous()

        # Start with the transition scores from start_tag to the first tag in each input
        if self.include_start_end_transitions:
            score = self.start_transitions.index_select(0, tags[0])
        else:
            score = 0.0

        # Broadcast the transition scores to one per batch element
        broadcast_transitions = self.transitions.view(1, num_tags, num_tags).expand(batch_size, num_tags, num_tags)

        # Add up the scores for the observed transitions and all the inputs but the last
        for i in range(sequence_length - 1):
            # Each is shape (batch_size,)
            current_tag, next_tag = tags[i], tags[i+1]

            # The scores for transitioning from current_tag to next_tag
            transition_score = (
                    broadcast_transitions
                    # Choose the current_tag-th row for each input
                    .gather(1, current_tag.view(batch_size, 1, 1).expand(batch_size, 1, num_tags))
                    # Squeeze down to (batch_size, num_tags)
                    .squeeze(1)
                    # Then choose the next_tag-th column for each of those
                    .gather(1, next_tag.view(batch_size, 1))
                    # And squeeze down to (batch_size,)
                    .squeeze(1)
            )

            # The score for using current_tag
            emit_score = logits[i].gather(1, current_tag.view(batch_size, 1)).squeeze(1)

            # Include transition score if next element is unmasked,
            # input_score if this element is unmasked.
            score = score + transition_score * mask[i + 1] + emit_score * mask[i]

        # Transition from last state to "stop" state. To start with, we need to find the last tag
        # for each instance.
        last_tag_index = mask.sum(0).long() - 1
        last_tags = tags.gather(0, last_tag_index.view(1, batch_size).expand(sequence_length, batch_size))

        # Is (sequence_length, batch_size), but all the columns are the same, so take the first.
        last_tags = last_tags[0]

        # Compute score of transitioning to `stop_tag` from each "last tag".
        if self.include_start_end_transitions:
            last_transition_score = self.end_transitions.index_select(0, last_tags)
        else:
            last_transition_score = 0.0

        # Add the last input if it's not masked.
        last_inputs = logits[-1]                                         # (batch_size, num_tags)
        last_input_score = last_inputs.gather(1, last_tags.view(-1, 1))  # (batch_size, 1)
        last_input_score = last_input_score.squeeze()                    # (batch_size,)

        score = score + last_transition_score + last_input_score * mask[-1]

        return score
开发者ID:pyknife,项目名称:allennlp,代码行数:72,代码来源:conditional_random_field.py


注:本文中的torch.LongTensor.sum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。