当前位置: 首页>>代码示例>>Python>>正文


Python LongTensor.split方法代码示例

本文整理汇总了Python中torch.LongTensor.split方法的典型用法代码示例。如果您正苦于以下问题:Python LongTensor.split方法的具体用法?Python LongTensor.split怎么用?Python LongTensor.split使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.LongTensor的用法示例。


在下文中一共展示了LongTensor.split方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: forward

# 需要导入模块: from torch import LongTensor [as 别名]
# 或者: from torch.LongTensor import split [as 别名]
    def forward(self,
                sequence_tensor: torch.FloatTensor,
                span_indices: torch.LongTensor,
                sequence_mask: torch.LongTensor = None,
                span_indices_mask: torch.LongTensor = None) -> None:
        # shape (batch_size, num_spans)
        span_starts, span_ends = [index.squeeze(-1) for index in span_indices.split(1, dim=-1)]

        if span_indices_mask is not None:
            # It's not strictly necessary to multiply the span indices by the mask here,
            # but it's possible that the span representation was padded with something other
            # than 0 (such as -1, which would be an invalid index), so we do so anyway to
            # be safe.
            span_starts = span_starts * span_indices_mask
            span_ends = span_ends * span_indices_mask

        if not self._use_exclusive_start_indices:
            start_embeddings = util.batched_index_select(sequence_tensor, span_starts)
            end_embeddings = util.batched_index_select(sequence_tensor, span_ends)

        else:
            # We want `exclusive` span starts, so we remove 1 from the forward span starts
            # as the AllenNLP ``SpanField`` is inclusive.
            # shape (batch_size, num_spans)
            exclusive_span_starts = span_starts - 1
            # shape (batch_size, num_spans, 1)
            start_sentinel_mask = (exclusive_span_starts == -1).long().unsqueeze(-1)
            exclusive_span_starts = exclusive_span_starts * (1 - start_sentinel_mask.squeeze(-1))

            # We'll check the indices here at runtime, because it's difficult to debug
            # if this goes wrong and it's tricky to get right.
            if (exclusive_span_starts < 0).any():
                raise ValueError(f"Adjusted span indices must lie inside the the sequence tensor, "
                                 f"but found: exclusive_span_starts: {exclusive_span_starts}.")

            start_embeddings = util.batched_index_select(sequence_tensor, exclusive_span_starts)
            end_embeddings = util.batched_index_select(sequence_tensor, span_ends)

            # We're using sentinels, so we need to replace all the elements which were
            # outside the dimensions of the sequence_tensor with the start sentinel.
            float_start_sentinel_mask = start_sentinel_mask.float()
            start_embeddings = start_embeddings * (1 - float_start_sentinel_mask) \
                                        + float_start_sentinel_mask * self._start_sentinel

        combined_tensors = util.combine_tensors(self._combination, [start_embeddings, end_embeddings])
        if self._span_width_embedding is not None:
            # Embed the span widths and concatenate to the rest of the representations.
            if self._bucket_widths:
                span_widths = util.bucket_values(span_ends - span_starts,
                                                 num_total_buckets=self._num_width_embeddings)
            else:
                span_widths = span_ends - span_starts

            span_width_embeddings = self._span_width_embedding(span_widths)
            return torch.cat([combined_tensors, span_width_embeddings], -1)

        if span_indices_mask is not None:
            return combined_tensors * span_indices_mask.unsqueeze(-1).float()
        return combined_tensors
开发者ID:apmoore1,项目名称:allennlp,代码行数:61,代码来源:endpoint_span_extractor.py

示例2: forward

# 需要导入模块: from torch import LongTensor [as 别名]
# 或者: from torch.LongTensor import split [as 别名]
    def forward(self,
                sequence_tensor: torch.FloatTensor,
                span_indices: torch.LongTensor,
                sequence_mask: torch.LongTensor = None,
                span_indices_mask: torch.LongTensor = None) -> torch.FloatTensor:

        # Both of shape (batch_size, sequence_length, embedding_size / 2)
        forward_sequence, backward_sequence = sequence_tensor.split(int(self._input_dim / 2), dim=-1)
        forward_sequence = forward_sequence.contiguous()
        backward_sequence = backward_sequence.contiguous()

        # shape (batch_size, num_spans)
        span_starts, span_ends = [index.squeeze(-1) for index in span_indices.split(1, dim=-1)]

        if span_indices_mask is not None:
            span_starts = span_starts * span_indices_mask
            span_ends = span_ends * span_indices_mask
        # We want `exclusive` span starts, so we remove 1 from the forward span starts
        # as the AllenNLP ``SpanField`` is inclusive.
        # shape (batch_size, num_spans)
        exclusive_span_starts = span_starts - 1
        # shape (batch_size, num_spans, 1)
        start_sentinel_mask = (exclusive_span_starts == -1).long().unsqueeze(-1)

        # We want `exclusive` span ends for the backward direction
        # (so that the `start` of the span in that direction is exlusive), so
        # we add 1 to the span ends as the AllenNLP ``SpanField`` is inclusive.
        exclusive_span_ends = span_ends + 1

        if sequence_mask is not None:
            # shape (batch_size)
            sequence_lengths = util.get_lengths_from_binary_sequence_mask(sequence_mask)
        else:
            # shape (batch_size), filled with the sequence length size of the sequence_tensor.
            sequence_lengths = util.ones_like(sequence_tensor[:, 0, 0]).long() * sequence_tensor.size(1)

        # shape (batch_size, num_spans, 1)
        end_sentinel_mask = (exclusive_span_ends == sequence_lengths.unsqueeze(-1)).long().unsqueeze(-1)

        # As we added 1 to the span_ends to make them exclusive, which might have caused indices
        # equal to the sequence_length to become out of bounds, we multiply by the inverse of the
        # end_sentinel mask to erase these indices (as we will replace them anyway in the block below).
        # The same argument follows for the exclusive span start indices.
        exclusive_span_ends = exclusive_span_ends * (1 - end_sentinel_mask.squeeze(-1))
        exclusive_span_starts = exclusive_span_starts * (1 - start_sentinel_mask.squeeze(-1))

        # We'll check the indices here at runtime, because it's difficult to debug
        # if this goes wrong and it's tricky to get right.
        if (exclusive_span_starts < 0).any() or (exclusive_span_ends > sequence_lengths.unsqueeze(-1)).any():
            raise ValueError(f"Adjusted span indices must lie inside the length of the sequence tensor, "
                             f"but found: exclusive_span_starts: {exclusive_span_starts}, "
                             f"exclusive_span_ends: {exclusive_span_ends} for a sequence tensor with lengths "
                             f"{sequence_lengths}.")

        # Forward Direction: start indices are exclusive. Shape (batch_size, num_spans, input_size / 2)
        forward_start_embeddings = util.batched_index_select(forward_sequence, exclusive_span_starts)
        # Forward Direction: end indices are inclusive, so we can just use span_ends.
        # Shape (batch_size, num_spans, input_size / 2)
        forward_end_embeddings = util.batched_index_select(forward_sequence, span_ends)

        # Backward Direction: The backward start embeddings use the `forward` end
        # indices, because we are going backwards.
        # Shape (batch_size, num_spans, input_size / 2)
        backward_start_embeddings = util.batched_index_select(backward_sequence, exclusive_span_ends)
        # Backward Direction: The backward end embeddings use the `forward` start
        # indices, because we are going backwards.
        # Shape (batch_size, num_spans, input_size / 2)
        backward_end_embeddings = util.batched_index_select(backward_sequence, span_starts)

        if self._use_sentinels:
            # If we're using sentinels, we need to replace all the elements which were
            # outside the dimensions of the sequence_tensor with either the start sentinel,
            # or the end sentinel.
            float_end_sentinel_mask = end_sentinel_mask.float()
            float_start_sentinel_mask = start_sentinel_mask.float()
            forward_start_embeddings = forward_start_embeddings * (1 - float_start_sentinel_mask) \
                                        + float_start_sentinel_mask * self._start_sentinel
            backward_start_embeddings = backward_start_embeddings * (1 - float_end_sentinel_mask) \
                                        + float_end_sentinel_mask * self._end_sentinel

        # Now we combine the forward and backward spans in the manner specified by the
        # respective combinations and concatenate these representations.
        # Shape (batch_size, num_spans, forward_combination_dim)
        forward_spans = util.combine_tensors(self._forward_combination,
                                             [forward_start_embeddings, forward_end_embeddings])
        # Shape (batch_size, num_spans, backward_combination_dim)
        backward_spans = util.combine_tensors(self._backward_combination,
                                              [backward_start_embeddings, backward_end_embeddings])
        # Shape (batch_size, num_spans, forward_combination_dim + backward_combination_dim)
        span_embeddings = torch.cat([forward_spans, backward_spans], -1)

        if self._span_width_embedding is not None:
            # Embed the span widths and concatenate to the rest of the representations.
            if self._bucket_widths:
                span_widths = util.bucket_values(span_ends - span_starts,
                                                 num_total_buckets=self._num_width_embeddings)
            else:
                span_widths = span_ends - span_starts

            span_width_embeddings = self._span_width_embedding(span_widths)
#.........这里部分代码省略.........
开发者ID:Jordan-Sauchuk,项目名称:allennlp,代码行数:103,代码来源:bidirectional_endpoint_span_extractor.py

示例3: forward

# 需要导入模块: from torch import LongTensor [as 别名]
# 或者: from torch.LongTensor import split [as 别名]
    def forward(self,
                sequence_tensor: torch.FloatTensor,
                span_indices: torch.LongTensor,
                sequence_mask: torch.LongTensor = None,
                span_indices_mask: torch.LongTensor = None) -> torch.FloatTensor:
        # both of shape (batch_size, num_spans, 1)
        span_starts, span_ends = span_indices.split(1, dim=-1)

        # shape (batch_size, num_spans, 1)
        # These span widths are off by 1, because the span ends are `inclusive`.
        span_widths = span_ends - span_starts

        # We need to know the maximum span width so we can
        # generate indices to extract the spans from the sequence tensor.
        # These indices will then get masked below, such that if the length
        # of a given span is smaller than the max, the rest of the values
        # are masked.
        max_batch_span_width = span_widths.max().item() + 1

        # shape (batch_size, sequence_length, 1)
        global_attention_logits = self._global_attention(sequence_tensor)

        # Shape: (1, 1, max_batch_span_width)
        max_span_range_indices = util.get_range_vector(max_batch_span_width,
                                                       util.get_device_of(sequence_tensor)).view(1, 1, -1)
        # Shape: (batch_size, num_spans, max_batch_span_width)
        # This is a broadcasted comparison - for each span we are considering,
        # we are creating a range vector of size max_span_width, but masking values
        # which are greater than the actual length of the span.
        #
        # We're using <= here (and for the mask below) because the span ends are
        # inclusive, so we want to include indices which are equal to span_widths rather
        # than using it as a non-inclusive upper bound.
        span_mask = (max_span_range_indices <= span_widths).float()
        raw_span_indices = span_ends - max_span_range_indices
        # We also don't want to include span indices which are less than zero,
        # which happens because some spans near the beginning of the sequence
        # have an end index < max_batch_span_width, so we add this to the mask here.
        span_mask = span_mask * (raw_span_indices >= 0).float()
        span_indices = torch.nn.functional.relu(raw_span_indices.float()).long()

        # Shape: (batch_size * num_spans * max_batch_span_width)
        flat_span_indices = util.flatten_and_batch_shift_indices(span_indices, sequence_tensor.size(1))

        # Shape: (batch_size, num_spans, max_batch_span_width, embedding_dim)
        span_embeddings = util.batched_index_select(sequence_tensor, span_indices, flat_span_indices)

        # Shape: (batch_size, num_spans, max_batch_span_width)
        span_attention_logits = util.batched_index_select(global_attention_logits,
                                                          span_indices,
                                                          flat_span_indices).squeeze(-1)
        # Shape: (batch_size, num_spans, max_batch_span_width)
        span_attention_weights = util.masked_softmax(span_attention_logits, span_mask)

        # Do a weighted sum of the embedded spans with
        # respect to the normalised attention distributions.
        # Shape: (batch_size, num_spans, embedding_dim)
        attended_text_embeddings = util.weighted_sum(span_embeddings, span_attention_weights)

        if span_indices_mask is not None:
            # Above we were masking the widths of spans with respect to the max
            # span width in the batch. Here we are masking the spans which were
            # originally passed in as padding.
            return attended_text_embeddings * span_indices_mask.unsqueeze(-1).float()

        return attended_text_embeddings
开发者ID:apmoore1,项目名称:allennlp,代码行数:68,代码来源:self_attentive_span_extractor.py


注:本文中的torch.LongTensor.split方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。