当前位置: 首页>>代码示例>>Python>>正文


Python MultinomialNB.class_prior方法代码示例

本文整理汇总了Python中sklearn.naive_bayes.MultinomialNB.class_prior方法的典型用法代码示例。如果您正苦于以下问题:Python MultinomialNB.class_prior方法的具体用法?Python MultinomialNB.class_prior怎么用?Python MultinomialNB.class_prior使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.naive_bayes.MultinomialNB的用法示例。


在下文中一共展示了MultinomialNB.class_prior方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: labelize

# 需要导入模块: from sklearn.naive_bayes import MultinomialNB [as 别名]
# 或者: from sklearn.naive_bayes.MultinomialNB import class_prior [as 别名]
    test_set = [(features(words), labelize(category in categories)) for (words, categories) in test_corpus]

    # train classifier
    # print "Training classifier for '%s'" % category
    # classifier = MaxentClassifier.train(train_set, max_iter= 3)
    # classifier = NaiveBayesClassifier.train(train_set)
    model = MultinomialNB()
    classifier = SklearnClassifier(model)

    # set priors
    classifier._encoder.fit([category, "no"])
    # [category, "no"] unless this is true then ["no", category]
    flip = classifier.labels()[0] == "no"
    categorized_proportion = len([words for (words, categories) in corpus if category in categories]) * 1.0 / len(corpus)
    if flip:
        model.class_prior = [1-categorized_proportion, categorized_proportion]
    else:
        model.class_prior = [categorized_proportion, 1-categorized_proportion]

    classifier.train(train_set)

    # test classifier
    test_results = classifier.classify_many([feat for (feat, label) in test_set])
    pos_test_set = set(i for i, result in enumerate(test_results) if result == category)
    reference_values = [label for (feat, label) in test_set]
    pos_ref_set = set(i for i, (feat, label) in enumerate(test_set) if label == category)
    accuracy = scores.accuracy(reference_values, test_results)
    accuracies.append(accuracy)
    precision = scores.precision(pos_ref_set, pos_test_set)
    recall = scores.recall(pos_ref_set, pos_test_set)
    f1 = scores.f_measure(pos_ref_set, pos_test_set)
开发者ID:Jasmeet107,项目名称:serapis,代码行数:33,代码来源:train.py


注:本文中的sklearn.naive_bayes.MultinomialNB.class_prior方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。