当前位置: 首页>>代码示例>>Python>>正文


Python MultinomialNB.add方法代码示例

本文整理汇总了Python中sklearn.naive_bayes.MultinomialNB.add方法的典型用法代码示例。如果您正苦于以下问题:Python MultinomialNB.add方法的具体用法?Python MultinomialNB.add怎么用?Python MultinomialNB.add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.naive_bayes.MultinomialNB的用法示例。


在下文中一共展示了MultinomialNB.add方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: print

# 需要导入模块: from sklearn.naive_bayes import MultinomialNB [as 别名]
# 或者: from sklearn.naive_bayes.MultinomialNB import add [as 别名]
train_matrix = train_matrix[0: train_matrix.shape[0], 0: train_matrix.shape[1] - model.intercept_.shape[0] ]
test_matrix = test_matrix[0: train_matrix.shape[0], 0: test_matrix.shape[1] - model.intercept_.shape[0] ]
print ("Accuracy = " + repr( sklearn.metrics.accuracy_score( test_labels , results )  ))
print (sklearn.metrics.classification_report( test_labels , results ))

print ("Method = KNN with word mover's distance as described in 'From Word Embeddings To Document Distances'")
model = WordMoversKNN(W_embed=embedding_weights , n_neighbors=3)
model.fit( train_matrix , train_labels )
results = model.predict( test_matrix )
print ("Accuracy = " + repr( sklearn.metrics.accuracy_score( test_labels , results )  ))
print (sklearn.metrics.classification_report( test_labels , results ))

print ("Method = MLP with bag-of-words features")
np.random.seed(0)
model = Sequential()
model.add(Dense(embeddings_dim, input_dim=train_matrix.shape[1], init='uniform', activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(embeddings_dim, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(1, activation='sigmoid'))
if num_classes == 2: model.compile(loss='binary_crossentropy', optimizer='adam', class_mode='binary')
else: model.compile(loss='categorical_crossentropy', optimizer='adam')
model.fit( train_matrix , train_labels , nb_epoch=30, batch_size=32)
results = model.predict_classes( test_matrix )
print ("Accuracy = " + repr( sklearn.metrics.accuracy_score( test_labels , results )  ))
print (sklearn.metrics.classification_report( test_labels , results ))

print ("Method = Stack of two LSTMs")
np.random.seed(0)
model = Sequential()
model.add(Embedding(max_features, embeddings_dim, input_length=max_sent_len, mask_zero=True, weights=[embedding_weights] ))
开发者ID:JViolante,项目名称:sentence-classification,代码行数:33,代码来源:sentence-classification.py


注:本文中的sklearn.naive_bayes.MultinomialNB.add方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。