当前位置: 首页>>代码示例>>Python>>正文


Python TSNE.fit_transform方法代码示例

本文整理汇总了Python中sklearn.manifold.TSNE.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python TSNE.fit_transform方法的具体用法?Python TSNE.fit_transform怎么用?Python TSNE.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.manifold.TSNE的用法示例。


在下文中一共展示了TSNE.fit_transform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def main():
    Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
    dbn = DBN([1000, 750, 500], UnsupervisedModel=AutoEncoder)
    # dbn = DBN([1000, 750, 500, 10])
    output = dbn.fit(Xtrain, pretrain_epochs=2)
    print "output.shape", output.shape

    # sample before using t-SNE because it requires lots of RAM
    sample_size = 600
    tsne = TSNE()
    reduced = tsne.fit_transform(output[:sample_size])
    plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain[:sample_size], alpha=0.5)
    plt.title("t-SNE visualization")
    plt.show()

    # t-SNE on raw data
    reduced = tsne.fit_transform(Xtrain[:sample_size])
    plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain[:sample_size], alpha=0.5)
    plt.title("t-SNE visualization")
    plt.show()

    pca = PCA()
    reduced = pca.fit_transform(output)
    plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain, alpha=0.5)
    plt.title("PCA visualization")
    plt.show()
开发者ID:cirpue49,项目名称:machine_learning_examples,代码行数:28,代码来源:unsupervised.py

示例2: vizualize_clusters

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def vizualize_clusters(X, y, py, hist=None):
    """ Using T-SNE to visualize the site clusters.
        Plot and save the scatter (and the histogramm).
    """
    model = TSNE(n_components=2, random_state=0)

    fig = model.fit_transform(X, y)
    fig1 = model.fit_transform(X, py)

    pyplot.figure(figsize=(16, 8))
    pyplot.subplot(121)

    classes = list(set(y))
    for c, color in zip(classes, plt.colors.cnames.iteritems()):
        indeces = [i for i, p in enumerate(y) if p == c]
        pyplot.scatter(fig[indeces, 0], fig[indeces, 1], marker="o", c=color[0])

    pyplot.subplot(122)

    clusters = list(set(py))
    for c, color in zip(clusters, plt.colors.cnames.iteritems()):
        indeces = [i for i, p in enumerate(py) if p == c]
        pyplot.scatter(fig1[indeces, 0], fig1[indeces, 1], marker="o", c=color[0])

    # pyplot.show()
    pyplot.savefig("clusters" + "_scatter.png")

    if hist is not None:
        pyplot.figure(figsize=(4, 4))
        pyplot.xticks(clusters)

        pyplot.bar(clusters, hist, align="center")
        # pyplot.show()
        pyplot.savefig("clusters" + "_hist.png")
开发者ID:favorart,项目名称:InfoSearch1,代码行数:36,代码来源:vizualize.py

示例3: tsne

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def tsne(similarity, euclid=False, perplexity=30):
    if euclid:
        model = TSNE(learning_rate=100, perplexity=perplexity, n_iter=200000)
        result = model.fit_transform(similarity)
    else:
        model = TSNE(learning_rate=100, n_iter=100000, init='random', metric='precomputed')
        result = model.fit_transform(1 - similarity)

    return result.T
开发者ID:thran,项目名称:experiments2.0,代码行数:11,代码来源:projection.py

示例4: MyTSNE

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def MyTSNE(train,test):
    #MyTSNE(train.iloc[:100,:],test.iloc[:20,:])
    model = TSNE(n_components=2, random_state=0)
    a = np.vstack(
            [train.values,
            test.values]
            )
    model.fit_transform(a)
    return
开发者ID:ikki407,项目名称:numerai,代码行数:11,代码来源:feat.py

示例5: programmer_5

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def programmer_5(data_zs, r):
    # 进行数据降维
    tsne = TSNE()
    tsne.fit_transform(data_zs)
    tsne = pd.DataFrame(tsne.embedding_, index=data_zs.index)

    # 不同类别用不同颜色和样式绘图
    d = tsne[r[u'聚类类别'] == 0]
    plt.plot(d[0], d[1], 'r.')
    d = tsne[r[u'聚类类别'] == 1]
    plt.plot(d[0], d[1], 'go')
    d = tsne[r[u'聚类类别'] == 2]
    plt.plot(d[0], d[1], 'b*')
    plt.show()
开发者ID:Ctipsy,项目名称:python_data_analysis_and_mining_action,代码行数:16,代码来源:code.py

示例6: learn_embedding

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def learn_embedding(precompute_metric=False, use_saved=False):
    base = 'datasets/dspace_topics'
    new_base = 'datasets/dspace_embeddings'
    # Delete previous saved embedding
    if os.path.exists(new_base):
        shutil.rmtree(new_base)
    os.makedirs(new_base)

    print 'Embedding: Extracting topics'
    # choose a random subset of documents
    filename_vec = os.listdir(base)
    subsample = 5000
    filename_vec = np.random.choice(filename_vec, subsample)
    topic_vec = []
    for filename in tqdm(filename_vec):
        path = os.path.join(base, filename)
        with open(path) as f:
            d = json.load(f)
            topics = d['topics']
            topic_vec.append(topics)

    print 'Embedding: Computing pairwise distances'
    if precompute_metric:
        if use_saved:
            with open('metric.npy') as f:
                metric = np.load(f)
        else:
            metric = pairwise_distances(np.array(topic_vec), metric=KL, n_jobs=-1)
            with open('metric.npy', 'w') as f:
                np.save(f, metric)

        print 'Embedding: Learning embedding'
        tsne = TSNE(n_iter=1000, verbose=10, metric='precomputed')
        y = tsne.fit_transform(metric)
    else:
        print 'Embedding: Learning embedding'
        tsne = TSNE(n_iter=1000, verbose=10)
        y = tsne.fit_transform(topic_vec)

    print 'Embedding: Saving embedding'
    for (index, filename) in tqdm(enumerate(filename_vec), total=len(filename_vec)):
        path = os.path.join(base, filename)
        with open(path, 'r') as f:
            d = json.load(f)
            d['embedding'] = list(y[index])
            new_path = os.path.join(new_base, filename)
            with open(new_path, 'w') as new_f:
                json.dump(d, new_f)
开发者ID:ben-eysenbach,项目名称:6.882-LDA,代码行数:50,代码来源:learn_dspace.py

示例7: main

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def main():
    embedding = WordEmbedding(embeddingpath(default_embeddingconfig))


    for old, new in spelling_changes:
        print(old, '--', new)
        print(embedding.nearest_words([old]))
        print()

    print()
    war, ist = tense_changes[0]
    tensediff = embedding[ist] - embedding[war]
    for past, present in tense_changes[1 : ]:
        print(past, '+ tensediff:', *embedding.nearest_words([embedding[past] + tensediff]))
        print('Should be:', present)
        print()

    # word_diffs = [embedding[new] - embedding[old] for (old, new) in word_changes]

    spelling_diffs = [embedding[new] - embedding[old] for (old, new) in spelling_changes[10 : 20]]
    tense_diffs = [embedding[present] - embedding[past] for (past, present) in tense_changes]

    def metric(u, v):
        return max(distance.cosine(u, v), 0)

    while True:
        try:
            model = TSNE(n_components=2, metric=metric)
            reduced = model.fit_transform(spelling_diffs + tense_diffs)
            print(reduced)
            return
        except Exception:
            pass
开发者ID:mbid,项目名称:ml-lecture-2015-project,代码行数:35,代码来源:embeddingproperties.py

示例8: visualize_latent_rep

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def visualize_latent_rep(args, model, x_latent):
    print("pca_on=%r pca_comp=%d tsne_comp=%d tsne_perplexity=%f tsne_lr=%f" % (
        args.use_pca,
        args.pca_components,
        args.tsne_components,
        args.tsne_perplexity,
        args.tsne_lr
    ))

    if args.use_pca:
        pca = PCA(n_components = args.pca_components)
        x_latent = pca.fit_transform(x_latent)

    figure(figsize=(6, 6))
    scatter(x_latent[:, 0], x_latent[:, 1], marker='.')
    show()

    tsne = TSNE(n_components = args.tsne_components,
                perplexity = args.tsne_perplexity,
                learning_rate = args.tsne_lr,
                n_iter = args.tsne_iterations,
                verbose = 4)
    x_latent_proj = tsne.fit_transform(x_latent)
    del x_latent

    figure(figsize=(6, 6))
    scatter(x_latent_proj[:, 0], x_latent_proj[:, 1], marker='.')
    show()
开发者ID:HFooladi,项目名称:keras-molecules,代码行数:30,代码来源:sample_latent.py

示例9: plotly_js_viz

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def plotly_js_viz(word_2_vec_model):
    tsne_model=TSNE(n_components=2,random_state=5)
    data=tsne_model.fit_transform(word_2_vec_model.syn0)
    xd=list(data[:,0])
    yd=list(data[:,1])
    names_our=word_2_vec_model.index2word
    plot([Scatter(x=xd,y=yd,mode="markers",text=names_our)])
开发者ID:ronygregory,项目名称:nips-data-analysis,代码行数:9,代码来源:DM_finding_similar_authors.py

示例10: make_tsne_plot

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def make_tsne_plot(model, rel_wds, plot_lims, title):

    dim = 30
    X, keys = make_data_matrix(model)

    # first we actually do PCA to reduce the
    # dimensionality to make tSNE easier to calculate
    X_std = StandardScaler().fit_transform(X)
    sklearn_pca = PCA(n_components=2)
    X = sklearn_pca.fit_transform(X_std)[:,:dim]

    # do downsample
    k = 5000
    sample = []
    important_words = []
    r_wds = [word[0] for word in rel_wds]
    for i, key in enumerate(keys):
        if key in r_wds:
            sample.append(i)
    sample = np.concatenate((np.array(sample),
                np.random.choice(len(keys), k-10, replace = False),
             ))
    X = X[sample,:]
    keys = [keys[i] for i in sample]



    # Do tSNE
    tsne = TSNE(n_components=2, random_state=0, metric="cosine")
    X_transf = tsne.fit_transform(X)

    k_means = KMeans(n_clusters=8)
    labels = k_means.fit_predict(X_transf)

    scatter_plot(X_transf[:,0], X_transf[:,1],  rel_wds, labels, title, keys, plot_lims)
开发者ID:quinngroup,项目名称:sm_w2v,代码行数:37,代码来源:plot_utils.py

示例11: plot_data

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def plot_data(data, has_label=True):
	import numpy as np
	import seaborn as sns
	from sklearn.manifold import TSNE
	from sklearn.decomposition import PCA

	if not has_label:
		data = data.copy()
		data['label'] = np.zeros([len(data),1])

	LIMIT = 4000
	if data.shape[0] > LIMIT:
		dt = data.sample(n=LIMIT, replace=False)
		X = dt.ix[:,:-1]
		labels = dt.ix[:,-1]
	else:
		X = data.ix[:,:-1]
		labels = data.ix[:,-1]

	tsne_model = TSNE(n_components=2, random_state=0)
	np.set_printoptions(suppress=True)
	points1 = tsne_model.fit_transform(X)
	df1 = pd.DataFrame(data=np.column_stack([points1,labels]), columns=["x","y","class"])
	sns.lmplot("x", "y", data=df1, hue='class', fit_reg=False, palette=sns.color_palette('colorblind'))
	sns.plt.title('TNSE')

	pca = PCA(n_components=2)
	pca.fit(X)
	points2 = pca.transform(X)
	df2 = pd.DataFrame(data=np.column_stack([points2,labels]), columns=["x","y","class"])
	sns.lmplot("x", "y", data=df2, hue='class', fit_reg=False, palette=sns.color_palette('colorblind'))
	sns.plt.title('PCA')
开发者ID:omid55,项目名称:teams_in_games,代码行数:34,代码来源:plot_data.py

示例12: perform_AE

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def perform_AE(X, dim=2, tsne=False):
    y = np.zeros(shape=X.shape[0], dtype=int)
    
    if tsne:
        hidden_layers = [X.shape[1], 500, 100, 32]
        encoder_weights, decoder_weights = pretrain(X, hidden_layers)
        X_32d = ae(X, encoder_weights, decoder_weights, hidden_layers)

        ae_tsne = TSNE(n_components=dim, learning_rate=800, verbose=1)
        X_2d = ae_tsne.fit_transform(X_32d)

        method = 'ae_tsne_scaled'
    ### END - if tsne

    else:
        hidden_layers = [X.shape[1], 500, 100, 20, dim]
        encoder_weights, decoder_weights = pretrain(X, hidden_layers)
        X_2d = ae(X, encoder_weights, decoder_weights, hidden_layers)
        
        method = 'ae_scaled'
    ### END - else

    print('***** ' + method + ' *****')
    cluster(X_2d, method)
    np.save("{0}_{1}_X_2d".format(species, method), X_2d)
开发者ID:Wangmoaza,项目名称:tetra,代码行数:27,代码来源:species_reduction.py

示例13: t_sne_view

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def t_sne_view(norm_table, subj_cond, cohorts, image_type):

    # t-SNE analysis: Use stochastic neighbor embedding to reduce dimensionality of
    # data set to two dimensions in a non-linear, distance dependent fashion

    # Perform PCA data reduction if dimensionality of feature space is large:
    if len(norm_table.columns) > 12:
        pca = PCA(n_components = 12)
        pca.fit(norm_table.as_matrix())
        
        raw_data = pca.transform(norm_table.as_matrix())
    else:
        raw_data = norm_table.as_matrix()
 
    # Transform data into a two-dimensional embedded space:
    tsne = TSNE(n_components = 2, perplexity = 40.0, early_exaggeration= 2.0, 
        learning_rate = 100.0, init = 'pca')

    tsne_data = tsne.fit_transform(raw_data)

    # Prepare for normalization and view:
    cols = ['t-SNE', 'Cluster Visualization']
    tsne_table = pd.DataFrame(tsne_data, index = norm_table.index, columns = cols)
           
    # The output is no longer centered or normalized, so shift & scale it before display:
    tsne_avg = ppmi.data_stats(tsne_table, subj_cond, cohorts)
    tsne_norm_table = ppmi.normalize_table(tsne_table, tsne_avg)       
    
    # Send out to graphics rendering engine:

    if (image_type == 'Gauss'):
        return scg.scatter_gauss(tsne_norm_table[cols[0]], tsne_norm_table[cols[1]], subj_cond)
    elif (image_type == 'Scatter'):
        return scg.scatter_plain(tsne_norm_table[cols[0]], tsne_norm_table[cols[1]], subj_cond)
开发者ID:bayesimpact,项目名称:PD-Learn,代码行数:36,代码来源:PPMI_learn.py

示例14: topic_dimen_reduce

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def topic_dimen_reduce(words, word2vec):
    dictionary, matrix = terms_analysis.get_words_matrix(words, word2vec)
    pca = PCA(n_components=50)
    pca_matrix = pca.fit_transform(matrix)
    tsne = TSNE(n_components=2)
    t_matrix = tsne.fit_transform(pca_matrix)
    return dictionary, t_matrix
开发者ID:hxiaofeng,项目名称:HTopicModel,代码行数:9,代码来源:dimen_reduce.py

示例15: apply_tSNE30

# 需要导入模块: from sklearn.manifold import TSNE [as 别名]
# 或者: from sklearn.manifold.TSNE import fit_transform [as 别名]
def apply_tSNE30(proj_data, proj_weights=None):
    model = TSNE(n_components=2, perplexity=30.0, metric="euclidean",
                 learning_rate=100, early_exaggeration=4.0,
                 random_state=RANDOM_SEED);
    norm_data = normalize_columns(proj_data);
    result = model.fit_transform(norm_data.T);
    return result;
开发者ID:shakea02,项目名称:FastProject,代码行数:9,代码来源:Projections.py


注:本文中的sklearn.manifold.TSNE.fit_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。