本文整理汇总了Python中sklearn.linear_model.Perceptron.score方法的典型用法代码示例。如果您正苦于以下问题:Python Perceptron.score方法的具体用法?Python Perceptron.score怎么用?Python Perceptron.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.linear_model.Perceptron
的用法示例。
在下文中一共展示了Perceptron.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: perceptron_histo
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def perceptron_histo():
"Interprétation des images comme histogrammes de couleurs et classification via le Perceptron"
alphas = np.arange(0.01,1.01,0.1)
best=np.zeros(4)
_, data, target, _ = utils.chargementHistogrammesImages(mer,ailleurs,1,-1)
X_train,X_test,Y_train,Y_test=train_test_split(data,target,test_size=0.3,random_state=random.seed())
for iterations in range(1,5):
for a in alphas:
start_time = time.time()
p = Perceptron(alpha=a, n_iter=iterations, random_state=random.seed(), n_jobs=-1)
x1=np.array(X_train)
x2=np.array(X_test)
p.fit(X=x1, y=Y_train)
score = p.score(x2,Y_test)
end_time = time.time()
if score>best[0]:
best[0] = score
best[1] = a
best[2] = iterations
best[3] = end_time-start_time
print("| Perceptron simple | V.Histo | alpha={:1.2f} iterations={:1.0f} | {:10.3f}ms | {:1.3f} |".format(best[1],best[2],best[3]*1000,best[0]))
示例2: perceptron_vecteur
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def perceptron_vecteur():
"Interprétation des images comme vecteurs de pixels et classification via le Perceptron"
alphas = np.arange(0.01,1.01,0.1)
best=np.zeros(5)
for npix in range(50,200,50):
_, data, target, _ = utils.chargementVecteursImages(mer,ailleurs,1,-1,npix)
X_train,X_test,Y_train,Y_test=train_test_split(data,target,test_size=0.3,random_state=random.seed())
for iterations in range(1,5):
for a in alphas:
start_time = time.time()
p = Perceptron(alpha=a, n_iter=iterations, random_state=random.seed(), n_jobs=-1)
#X_train, etc, sont des tableaux à 3 dimensiosn par défaut, (93,1,30000) par exemple, qu'il faut remmener en 2 dimensions
x1=np.array(X_train)
x1 = np.reshape(x1, (x1.shape[0],x1.shape[2]))
x2=np.array(X_test)
x2 = np.reshape(x2, (x2.shape[0],x2.shape[2]))
p.fit(X=x1, y=Y_train)
score = p.score(x2,Y_test)
end_time = time.time()
if score>best[0]:
best[0] = score
best[1] = a
best[2] = iterations
best[3] = end_time-start_time
best[4] = npix
print("| Perceptron simple | V.Pix {:4.0f} | alpha={:1.2f} iterations={:1.0f} | {:10.3f}ms | {:1.3f} |".format(best[4],best[1],best[2],best[3]*1000,best[0]))
示例3: t
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def t():
# 1
from pandas import read_csv
df = read_csv('w2/perceptron-train.csv', header=None)
dt = read_csv('w2/perceptron-test.csv', header=None)
yf = df[0]
xf = df.drop([0], axis=1)
# print(yf, xf)
yt = dt[0]
xt = dt.drop([0], axis=1)
# print(yt, xt)
# 2
from sklearn.linear_model import Perceptron
clf = Perceptron(random_state=241)
clf.fit(xf, yf)
af1 = clf.score(xf, yf)
at1 = clf.score(xt, yt)
rf = clf.predict(xf)
rt = clf.predict(xt)
# print(list(yf))
# print(pf)
# print(list(yt))
# print(pt)
# 3
from sklearn.metrics import accuracy_score
af = accuracy_score(yf, rf)
at = accuracy_score(yt, rt)
print(af, at)
print(af1, at1)
# 4
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
xfs = scaler.fit_transform(xf)
xts = scaler.transform(xt)
clf.fit(xfs, yf)
afs1 = clf.score(xfs, yf)
ats1 = clf.score(xts, yt)
pfs = clf.predict(xfs)
pts = clf.predict(xts)
afs = accuracy_score(yf, pfs)
ats = accuracy_score(yt, pts)
print(afs, ats)
print(afs1, ats1)
pf('5', round(ats - at, 3))
示例4: neural_net
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def neural_net(train, test):
y = []
xTrain, yTrain = loadData(train)
xTest, yTest = loadData(test)
nN = Perceptron()
nN.fit(xTrain, yTrain)
y = nN.predict(xTest)
testError = 1 - nN.score(xTest, yTest)
print 'Test error: ' , testError
return y
示例5: neural_net
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def neural_net(train, test):
y = []
trainY, trainX = loadData(train)
testY, testX = loadData(test)
neuralNet = Perceptron()
neuralNet.fit(trainX, trainY)
y = neuralNet.predict(testX)
testError = 1 - neuralNet.score(testX, testY)
print 'Test error: ' + str(testError)
return y
示例6: test_model
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def test_model(training_data, testing_data, word2vec_model):
v = DictVectorizer()
train_features, train_labels = build_features(training_data, word2vec_model, v, 'train')
test_features, test_labels = build_features(testing_data, word2vec_model, v)
# create the perceptron model
model = Perceptron(n_iter = 5)
# fit the model to the training data
model.fit(train_features, train_labels)
# get the accuracy on the testing data
accuracy = model.score(test_features, test_labels)
return accuracy
示例7: __Accuracy
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def __Accuracy(dataDict, parameterDict):
train_X = dataDict['train_X']
train_Y = dataDict['train_Y']
cross_X = dataDict['cross_X']
cross_Y = dataDict['cross_Y']
penalty = parameterDict['penalty']
alpha = parameterDict['alpha']
fit_intercept = parameterDict['fit_intercept']
n_iter = parameterDict['n_iter']
shuffle = parameterDict['shuffle']
eta0 = parameterDict['eta0']
clf = Perceptron(penalty=penalty, alpha=alpha, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, random_state=1, eta0=eta0, warm_start=False)
model = clf.fit(train_X, train_Y) # All features must be float.
accuracy = clf.score(cross_X, cross_Y) # Score=Accuracy=(TP+TN)/(TP+TN+FP+FN)=%Correct
return accuracy
示例8: main
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def main( argv ):
try:
training_filename = argv[ 1 ]
testing_filename = argv[ 2 ]
output_filename = argv[ 3 ]
except IndexError:
print( "Error, usage: \"python3 {} <training> <testing> <output>\"".format( argv[ 0 ] ) )
return
Training_DataFrame = pd.read_csv( training_filename )
X = Training_DataFrame.ix[:,0:-1]
Y = Training_DataFrame.ix[:,-1]
Testing_DataFrame = pd.read_csv( testing_filename )
testing_X = Testing_DataFrame.ix[:,0:-1]
testing_Y = Testing_DataFrame.ix[:,-1]
'''
Perceptron
'''
from sklearn.linear_model import Perceptron
# Hyper Parameters:
alpha = 0.0001
n_iter = 20
# Fit Classifier
print( "{} Started training".format( str( datetime.now() ) ) )
P_classifier = Perceptron( alpha = alpha, n_iter = n_iter )
P_classifier.fit( X, Y )
print( "{} Stopped training".format( str( datetime.now() ) ) )
# Report results
P_score = P_classifier.score( testing_X, testing_Y )
print( "\nPerceptron Accuracy:", P_score )
示例9: train
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def train(a,sizel,intercept):
d = a.copy()
pes = Perceptron(n_jobs=4,n_iter=500,fit_intercept=intercept)
# d = d.tolist()
train = d[:len(d)/sizel]
C = d[len(d)/sizel:]
train_res = numpy.zeros(shape=(len(train)))#[0.0 for i in range(len(train))]
C_res = numpy.zeros(shape=(len(C)))#[0.0 for i in range(len(C))]
# C = [0.0 for i in range(len(C))]
class_index = len(d[0])-1
for i in range(len(train)):
train_res[i] = (train[i][class_index] > 1)# and train[i][class_index] < 16)
train[i][class_index] = 0
C_res[i] = (C[i][class_index]> 1)# and C[i][class_index] < 16)
C[i][class_index] = 0
pes.fit(train,train_res)
output = pes.predict(C)
(falsepr, truepr, thr) = roc_curve(C_res, output, 1)
area = auc(falsepr, truepr)
output = pes.score(C,C_res)
return (output, area)
示例10: StandardScaler
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
#!/usr/bin/env python
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
import numpy as np
from titanic import answer
if __name__ == '__main__':
train_data = np.genfromtxt('perceptron-train.csv', delimiter=',')
test_data = np.genfromtxt('perceptron-test.csv', delimiter=',')
X_train_data = features = train_data[:, 1:]
Y_train_data = train_data[:, 0]
X_test_data = features = test_data[:, 1:]
Y_test_data = test_data[:, 0]
scaler = StandardScaler()
clf = Perceptron(random_state=241)
clf.fit(X_train_data, Y_train_data)
scores = clf.score(X_test_data, Y_test_data)
print(scores.mean())
X_train_data_scaled = scaler.fit_transform(X_train_data)
X_test_data_scaled = scaler.transform(X_test_data)
clf.fit(X_train_data_scaled, Y_train_data)
scaled_scores = clf.score(X_test_data_scaled, Y_test_data)
print(scores.mean(), scaled_scores.mean())
answer(scaled_scores.mean() - scores.mean(), 'feature_normalization.txt')
示例11: Perceptron
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
X_test = pd.read_csv('perceptron-test.csv', header=None)
y = X_train[X_train.columns[0]]
X_train = X_train.drop(X_train.columns[0], axis=1, inplace=False)
print X_train
clf = Perceptron(random_state=42)
clf.fit(X_train, y)
print clf.predict(X_train)
# 0.34
y1 = X_test[X_test.columns[0]]
X_test = X_test.drop(X_test.columns[0], axis=1, inplace=False)
score = clf.score(X_test, y1)
print score
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
clf = Perceptron(random_state=42)
clf.fit(X_train_scaled, y)
# 0.89
score_scaled = clf.score(X_test_scaled, y1)
print score_scaled
print (score_scaled - score)
示例12: main
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def main( argv ):
try:
input_csv_filename = argv[ 1 ]
output_csv_filename = argv[ 2 ]
except IndexError:
print( "Error, usage: \"python3 {} <CSV> <output_CSV>\"".format( argv[ 0 ] ) )
return
''' Cross validation parameters '''
split_count = 3
import crossValidationGenerator as cvg
cvg.splitData( input_csv_filename, split_count )
Y_results = getY( input_csv_filename )
RF_predictions = []
P_predictions = []
KNN_predictions = []
for set_idx in range( split_count ):
print( "\n{} Starting split {}:".format( str( datetime.now() ), set_idx + 1 ) )
train_filename = "train_split_{}.csv".format( set_idx )
test_filename = "test_split_{}.csv".format( set_idx )
# Read training data
train_df = pd.read_csv( train_filename )
X = train_df.ix[:,0:-1]
Y = train_df.ix[:,-1]
# Read training data
test_df = pd.read_csv( test_filename )
test_X = test_df.ix[:,0:-1]
test_Y = test_df.ix[:,-1]
''' Random Forest '''
from sklearn.ensemble import RandomForestClassifier
# Hyper Parameters
n_estimators = 60
RF_classifier = RandomForestClassifier (
n_estimators = n_estimators
)
print( "{} | Training Random Forest".format( str( datetime.now() ) ) )
RF_classifier.fit( X, Y )
RF_pred = RF_classifier.predict( test_X )
RF_predictions.extend( RF_pred )
print( "{} > Random forest completed for split {} with accuracy {}%\n".format( str( datetime.now() ), set_idx + 1, 100 * RF_classifier.score( test_X, test_Y ) ) )
''' Perceptron '''
from sklearn.linear_model import Perceptron
# Hyper Parameters
alpha = 0.0001
n_iter = 20
P_classifier = Perceptron (
alpha = alpha,
n_iter = n_iter
)
print( "{} | Training Perceptron".format( str( datetime.now() ) ) )
P_classifier.fit( X, Y )
P_pred = P_classifier.predict( test_X )
P_predictions.extend( P_pred )
print( "{} > Perceptron completed for split {} with accuracy {}%\n".format( str( datetime.now() ), set_idx + 1, 100 * P_classifier.score( test_X, test_Y ) ) )
''' K-NN '''
from sklearn.neighbors import KNeighborsClassifier
# Hyper Parameters
n_neighbors = 20
KNN_classifier = KNeighborsClassifier (
n_neighbors = n_neighbors
)
#.........这里部分代码省略.........
示例13: test_perceptron_accuracy
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
def test_perceptron_accuracy():
for data in (X, X_csr):
clf = Perceptron(max_iter=100, tol=None, shuffle=False)
clf.fit(data, y)
score = clf.score(data, y)
assert_greater(score, 0.7)
示例14:
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
knn=KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,Y_train)
Y_pred=knn.predict(X_test)
acc_knn=round(knn.score(X_train,Y_train)*100,2)
#print(acc_knn)
gaussian=GaussianNB()
gaussian.fit(X_train,Y_train)
Y_pred=gaussian.predict(X_test)
acc_gaussian=round(gaussian.score(X_train,Y_train)*100,2)
#print(acc_gaussian)
perceptron=Perceptron()
perceptron.fit(X_train,Y_train)
Y_pred=perceptron.predict(X_test)
acc_perceptron=round(perceptron.score(X_train,Y_train)*100,2)
#print(acc_perceptron)
linear_svc=LinearSVC()
linear_svc.fit(X_train,Y_train)
Y_pred=linear_svc.predict(X_test)
acc_linear_svc=round(linear_svc.score(X_train,Y_train)*100,2)
#print(acc_linear_svc)
sgd=SGDClassifier()
sgd.fit(X_train,Y_train)
Y_pred=sgd.predict(X_test)
acc_sgd=round(sgd.score(X_train,Y_train)*100,2)
#print(acc_sgd)
decision_tree=DecisionTreeClassifier()
示例15: Perceptron
# 需要导入模块: from sklearn.linear_model import Perceptron [as 别名]
# 或者: from sklearn.linear_model.Perceptron import score [as 别名]
import numpy as np
from sklearn.linear_model import Perceptron
from sklearn.preprocessing import StandardScaler
import pandas as pd
data_test = pd.read_csv('C:/temp/machine learning/courseraYa/perceptron-test.csv', header=0)
data_train = pd.read_csv('C:/temp/machine learning/courseraYa/perceptron-train.csv', header=0)
y_train = data_train.iloc[:,0] #classes / target values
X_train = data_train.iloc[:,1:] #feaches
y_test = data_test.iloc[:,0] #classes / target values
X_test = data_test.iloc[:,1:] #feaches
clf = Perceptron(random_state=241, shuffle = True)
clf.fit(X_train, y_train)
#predictions = clf.predict(X_test)
acur = clf.score(X_test,y_test)
print(acur)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
clf_scaled = Perceptron(random_state=241, shuffle = True)
clf_scaled.fit(X_train_scaled, y_train)
#predictions = clf.predict(X_test)
acur_scaled = clf_scaled.score(X_test_scaled,y_test)
print(acur_scaled)