本文整理汇总了Python中sklearn.linear_model.OrthogonalMatchingPursuit.set_params方法的典型用法代码示例。如果您正苦于以下问题:Python OrthogonalMatchingPursuit.set_params方法的具体用法?Python OrthogonalMatchingPursuit.set_params怎么用?Python OrthogonalMatchingPursuit.set_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.linear_model.OrthogonalMatchingPursuit
的用法示例。
在下文中一共展示了OrthogonalMatchingPursuit.set_params方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_estimator
# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import set_params [as 别名]
def test_estimator():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_.shape, ())
assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_.shape, (n_targets,))
assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
coef_normalized = omp.coef_[0].copy()
omp.set_params(fit_intercept=True, normalize=False)
omp.fit(X, y[:, 0])
assert_array_almost_equal(coef_normalized, omp.coef_)
omp.set_params(fit_intercept=False, normalize=False)
omp.fit(X, y[:, 0])
assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_, 0)
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_, 0)
assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
示例2: test_estimator
# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import set_params [as 别名]
def test_estimator():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_.shape, ())
assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs)
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_.shape, (n_targets,))
assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
omp.set_params(fit_intercept=False, normalize=False)
omp.fit(X, y[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_, 0)
assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs)
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_, 0)
assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
示例3: test_estimator
# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import set_params [as 别名]
def test_estimator():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_.shape, ())
assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_.shape, (n_targets,))
assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
omp.set_params(fit_intercept=False, normalize=False)
assert_warns(DeprecationWarning, omp.fit, X, y[:, 0], Gram=G, Xy=Xy[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_, 0)
assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)
assert_warns(DeprecationWarning, omp.fit, X, y, Gram=G, Xy=Xy)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_, 0)
assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)