本文整理汇总了Python中sklearn.linear_model.OrthogonalMatchingPursuit类的典型用法代码示例。如果您正苦于以下问题:Python OrthogonalMatchingPursuit类的具体用法?Python OrthogonalMatchingPursuit怎么用?Python OrthogonalMatchingPursuit使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了OrthogonalMatchingPursuit类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Linear_Regression
def Linear_Regression(R_data):# return data
"""
The R_data is with nXm matrix with n observations and m factors.
Each column will be the time series for each ticker name
"""
# even though we change the order of getting data
#ticker_list = R_data.columns.values
#Depend_sid = ticker_list[sid1]
#Indep_sids = ticker_list[sid2]
sid_list = []
for i in range(0,len(factors)):
sid_list.append(R_data[factors[i]])
Y = R_data[securities[0]]
# del R_data[securities[0]]
# indep = R_data.ix[:,1:len(securities)]
indep = pd.concat(sid_list, axis=1)
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=len(factors), fit_intercept= True)
omp.fit(indep, Y)
# coef = omp.coef_
# idx_r, = coef.nonzero()
# X = sm.add_constant(indep, prepend=True)
# lm_Result = sm.OLS(Y, X).fit()
return omp
示例2: test_omp_reaches_least_squares
def test_omp_reaches_least_squares():
# Use small simple data; it's a sanity check but OMP can stop early
rng = check_random_state(0)
n_samples, n_features = (10, 8)
n_targets = 3
X = rng.randn(n_samples, n_features)
Y = rng.randn(n_samples, n_targets)
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features)
lstsq = LinearRegression()
omp.fit(X, Y)
lstsq.fit(X, Y)
assert_array_almost_equal(omp.coef_, lstsq.coef_)
示例3: test_omp_cv
def test_omp_cv():
y_ = y[:, 0]
gamma_ = gamma[:, 0]
ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False,
max_iter=10, cv=5)
ompcv.fit(X, y_)
assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs)
assert_array_almost_equal(ompcv.coef_, gamma_)
omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False,
n_nonzero_coefs=ompcv.n_nonzero_coefs_)
omp.fit(X, y_)
assert_array_almost_equal(ompcv.coef_, omp.coef_)
示例4: classify_OMP
def classify_OMP(train, test):
from sklearn.linear_model import OrthogonalMatchingPursuit as OMP
x, y = train
ydim = np.unique(y).shape[0]
y = [tovec(yi, ydim) for yi in y]
clf = OMP()
clf.fit(x, y)
x, y = test
proba = clf.predict(x)
return proba
示例5: fit_model_14
def fit_model_14(self,toWrite=False):
model = OrthogonalMatchingPursuit()
for data in self.cv_data:
X_train, X_test, Y_train, Y_test = data
model.fit(X_train,Y_train)
pred = model.predict(X_test)
print("Model 14 score %f" % (logloss(Y_test,pred),))
if toWrite:
f2 = open('model14/model.pkl','w')
pickle.dump(model,f2)
f2.close()
示例6: test_omp_cv
def test_omp_cv():
# FIXME: This test is unstable on Travis, see issue #3190 for more detail.
check_skip_travis()
y_ = y[:, 0]
gamma_ = gamma[:, 0]
ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False,
max_iter=10, cv=5)
ompcv.fit(X, y_)
assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs)
assert_array_almost_equal(ompcv.coef_, gamma_)
omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False,
n_nonzero_coefs=ompcv.n_nonzero_coefs_)
omp.fit(X, y_)
assert_array_almost_equal(ompcv.coef_, omp.coef_)
示例7: __init__
def __init__(self, patch_size=(12,12), max_samples=1000000, **omp_args):
self.patch_size = patch_size
self.max_samples = max_samples
self.omp = OrthogonalMatchingPursuit(**omp_args)
self.D = None
self.data = None
self.components = None
self.zscore=False
self.log_amplitude=False
示例8: __init__
def __init__(self, n_components=49, patch_size=(8,8), max_samples=1000000, **kwargs):
self.omp = OrthogonalMatchingPursuit()
self.n_components = n_components
self.patch_size = patch_size
self.max_samples = max_samples
self.D = None
self.data = None
self.components = None
self.standardize=False
示例9: SparseDeconvolution
def SparseDeconvolution(x,y,p,rtype='omp'):
from numpy import zeros, hstack, floor, array, shape, sign
from scipy.linalg import toeplitz, norm
from sklearn.linear_model import OrthogonalMatchingPursuit, Lasso
xm = x[abs(x).argmax()]
# x = (x.copy())/xm
x = (x.copy())/xm
x = x/norm(x)
y = (y.copy())/xm
Nx=len(x)
Ny=len(y)
X = toeplitz(hstack((x,zeros(Nx+Ny-2))),r=zeros(Ny+Nx-1))
Y = hstack((zeros(Nx-1),y,zeros(Nx-1)))
if (rtype=='omp')&(type(p)==int):
model = OrthogonalMatchingPursuit(n_nonzero_coefs=p,normalize=False)
elif (rtype=='omp')&(p<1.0):
model = OrthogonalMatchingPursuit(tol=p,normalize=False)
elif (rtype=='lasso'):
model = Lasso(alpha=p)
model.fit(X,Y)
h = model.coef_
b = model.intercept_
return Y-b,X,h
示例10: CSSK
def CSSK(h,const=5.0,noise=0.0000001):
"""Compressed Sensing replacement of Fourier Transform on 1D array h
* REQUIRES CVXPY PACKAGE *
h = sampled time signal
const = scalar multiple dimension of h, larger values give greater
resolution albeit with increased cost.
noise = scalar constant to account for numerical noise
returns:
g = fourier transform h to frequency domain using CS technique
"""
h = np.asarray(h, dtype=float)
Nt = len(h)
Nw = int(const*Nt)
t = np.arange(Nt)
w = np.arange(Nw)
#F = np.sin(2 * np.pi * np.outer(t,w) / Nw)
F = (1/np.float(Nw))*np.sin(2.0*np.pi*np.outer(t,w)/np.float(Nw))
#omp_cv = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
#omp_cv = OrthogonalMatchingPursuitCV(verbose=True,normalize=True)
omp_cv = OrthogonalMatchingPursuit(tol=noise)
omp_cv.fit(F, h)
coef = omp_cv.coef_
#idx_r, = coef.nonzero()
g = coef
### begin using cvxpy
#g = cvx.Variable(Nw)
## min |g|_1 subject to |F.g - h|_2 < noise
#objective = cvx.Minimize(cvx.norm(g,1))
#constraints = [cvx.norm(F*g - h,2) <= noise]
#prob = cvx.Problem(objective, constraints)
#prob.solve(solver='SCS',verbose=True)
#g = np.asarray(g.value)
#g = g[:,0]
### end using cvxpy
return g
示例11: test_estimator_shapes
def test_estimator_shapes():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_.shape, ())
assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_.shape, (n_targets,))
assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
omp.fit(X, y[:, 0], Gram=G, Xy=Xy[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_.shape, ())
assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)
omp.fit(X, y, Gram=G, Xy=Xy)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_.shape, (n_targets,))
assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
示例12: test_estimator
def test_estimator():
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_.shape, ())
assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)
omp.fit(X, y)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_.shape, (n_targets,))
assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
omp.set_params(fit_intercept=False, normalize=False)
assert_warns(DeprecationWarning, omp.fit, X, y[:, 0], Gram=G, Xy=Xy[:, 0])
assert_equal(omp.coef_.shape, (n_features,))
assert_equal(omp.intercept_, 0)
assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)
assert_warns(DeprecationWarning, omp.fit, X, y, Gram=G, Xy=Xy)
assert_equal(omp.coef_.shape, (n_targets, n_features))
assert_equal(omp.intercept_, 0)
assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
示例13: OrthogonalMatchingPursuit
# distort the clean signal
##########################
y_noisy = y + 0.05 * np.random.randn(len(y))
# plot the sparse signal
########################
pl.figure(figsize=(7, 7))
pl.subplot(4, 1, 1)
pl.xlim(0, 512)
pl.title("Sparse signal")
pl.stem(idx, w[idx])
# plot the noise-free reconstruction
####################################
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
pl.subplot(4, 1, 2)
pl.xlim(0, 512)
pl.title("Recovered signal from noise-free measurements")
pl.stem(idx_r, coef[idx_r])
# plot the noisy reconstruction
###############################
omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
pl.subplot(4, 1, 3)
pl.xlim(0, 512)
示例14: orthogonal_matching_pursuit
def orthogonal_matching_pursuit(y, D):
omp = OrthogonalMatchingPursuit()
omp.fit(D, y)
return omp
示例15: SparseApproxSpectrum
class SparseApproxSpectrum(object):
def __init__(self, n_components=49, patch_size=(8,8), max_samples=1000000, **kwargs):
self.omp = OrthogonalMatchingPursuit()
self.n_components = n_components
self.patch_size = patch_size
self.max_samples = max_samples
self.D = None
self.data = None
self.components = None
self.standardize=False
def _extract_data_patches(self, X):
self.X = X
data = extract_patches_2d(X, self.patch_size)
data = data.reshape(data.shape[0], -1)
if len(data)>self.max_samples:
data = np.random.permutation(data)[:self.max_samples]
print data.shape
if self.standardize:
self.mn = np.mean(data, axis=0)
self.std = np.std(data, axis=0)
data -= self.mn
data /= self.std
self.data = data
def extract_codes(self, X, standardize=False):
self.standardize=standardize
self._extract_data_patches(X)
self.dico = MiniBatchDictionaryLearning(n_components=self.n_components, alpha=1, n_iter=500)
print "Dictionary learning from data..."
self.D = self.dico.fit(self.data)
return self
def plot_codes(self, cbar=False, **kwargs):
#plt.figure(figsize=(4.2, 4))
N = int(np.ceil(np.sqrt(self.n_components)))
kwargs.setdefault('cmap', pl.cm.gray_r)
kwargs.setdefault('origin','bottom')
kwargs.setdefault('interpolation','nearest')
for i, comp in enumerate(self.D.components_):
plt.subplot(N, N, i + 1)
comp = comp * self.std + self.mn if self.standardize else comp
plt.imshow(comp.reshape(self.patch_size), **kwargs)
if cbar:
plt.colorbar()
plt.xticks(())
plt.yticks(())
plt.suptitle('Dictionary learned from spectrum patches\n', fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)
def extract_audio_dir_codes(self, dir_expr='/home/mkc/exp/FMRI/stimuli/Wav6sRamp/*.wav',**kwargs):
flist=glob.glob(dir_expr)
self.X = np.vstack([feature_scale(LogFrequencySpectrum(f, nbpo=24, nhop=1024).X,normalize=1).T for f in flist]).T
self.D = extract_codes(self.X, **kwargs)
self.plot_codes(**kwargs)
return self
def _get_approximation_coefs(self,data, components):
w = np.array([self.omp.fit(components.T, d.T).coef_ for d in data])
return w
def reconstruct_spectrum(self, w=None, randomize=False):
data = self.data
components = self.D.components_
if w is None:
self.w = self._get_approximation_coefs(data, components)
w = self.w
if self.standardize:
for comp in components: comp = comp * self.std + self.mn
if randomize:
components = np.random.permutation(components)
recon = np.dot(w, components).reshape(-1,self.patch_size[0],self.patch_size[1])
self.X_hat = reconstruct_from_patches_2d(recon, self.X.shape)
return self
def reconstruct_individual_spectra(self, w=None, randomize=False, plotting=False, **kwargs):
self.reconstruct_spectrum(w,randomize)
w, components = self.w, self.D.components_
self.X_hat_l = []
for i in range(len(self.w.T)):
r=np.array((np.matrix(w)[:,i]*np.matrix(components)[i,:])).reshape(-1,self.patch_size[0],self.patch_size[1])
self.X_hat_l.append(reconstruct_from_patches_2d(r, self.X.shape))
if plotting:
plt.figure()
for k in range(self.n_components):
plt.subplot(self.n_components**0.5,self.n_components**0.5,k+1)
feature_plot(self.X_hat_l[k],nofig=1,**kwargs)
return self