当前位置: 首页>>代码示例>>Python>>正文


Python OrthogonalMatchingPursuit.fit方法代码示例

本文整理汇总了Python中sklearn.linear_model.OrthogonalMatchingPursuit.fit方法的典型用法代码示例。如果您正苦于以下问题:Python OrthogonalMatchingPursuit.fit方法的具体用法?Python OrthogonalMatchingPursuit.fit怎么用?Python OrthogonalMatchingPursuit.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.OrthogonalMatchingPursuit的用法示例。


在下文中一共展示了OrthogonalMatchingPursuit.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Linear_Regression

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def Linear_Regression(R_data):# return data
    """
    The R_data is with nXm matrix with n observations and m factors.
    Each column will be the time series for each ticker name
    """
    # even though we change the order of getting data
    #ticker_list = R_data.columns.values
    
    #Depend_sid = ticker_list[sid1]
    #Indep_sids = ticker_list[sid2]
    sid_list = []
    for i in range(0,len(factors)):
        sid_list.append(R_data[factors[i]])
    
    Y = R_data[securities[0]]
#     del R_data[securities[0]]
#     indep = R_data.ix[:,1:len(securities)]
    indep = pd.concat(sid_list, axis=1)
    
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=len(factors), fit_intercept= True)
    omp.fit(indep, Y)
#     coef = omp.coef_
#     idx_r, = coef.nonzero()
#     X = sm.add_constant(indep, prepend=True)
#     lm_Result = sm.OLS(Y, X).fit()
    return omp
开发者ID:darkhorse20,项目名称:Strategies,代码行数:28,代码来源:Pair_Stat_Arb_OMP.py

示例2: test_estimator

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_estimator():
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
    omp.fit(X, y[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_.shape, ())
    assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs

    omp.fit(X, y)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_.shape, (n_targets,))
    assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs

    coef_normalized = omp.coef_[0].copy()
    omp.set_params(fit_intercept=True, normalize=False)
    omp.fit(X, y[:, 0])
    assert_array_almost_equal(coef_normalized, omp.coef_)

    omp.set_params(fit_intercept=False, normalize=False)
    omp.fit(X, y[:, 0])
    assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_, 0)

    omp.fit(X, y)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_, 0)
    assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:29,代码来源:test_omp.py

示例3: test_omp_cv

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_omp_cv():
    y_ = y[:, 0]
    gamma_ = gamma[:, 0]
    ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False,
                                        max_iter=10, cv=5)
    ompcv.fit(X, y_)
    assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs)
    assert_array_almost_equal(ompcv.coef_, gamma_)
    omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False,
                                    n_nonzero_coefs=ompcv.n_nonzero_coefs_)
    omp.fit(X, y_)
    assert_array_almost_equal(ompcv.coef_, omp.coef_)
开发者ID:1992huanghai,项目名称:scikit-learn,代码行数:14,代码来源:test_omp.py

示例4: test_omp_reaches_least_squares

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_omp_reaches_least_squares():
    # Use small simple data; it's a sanity check but OMP can stop early
    rng = check_random_state(0)
    n_samples, n_features = (10, 8)
    n_targets = 3
    X = rng.randn(n_samples, n_features)
    Y = rng.randn(n_samples, n_targets)
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features)
    lstsq = LinearRegression()
    omp.fit(X, Y)
    lstsq.fit(X, Y)
    assert_array_almost_equal(omp.coef_, lstsq.coef_)
开发者ID:1992huanghai,项目名称:scikit-learn,代码行数:14,代码来源:test_omp.py

示例5: classify_OMP

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def classify_OMP(train, test):
	from sklearn.linear_model import OrthogonalMatchingPursuit as OMP

	x, y = train
	ydim = np.unique(y).shape[0]
	y = [tovec(yi, ydim) for yi in y]

	clf = OMP()
	clf.fit(x, y)
	
	x, y = test
	proba = clf.predict(x)
	return proba
开发者ID:liangxh,项目名称:idu,代码行数:15,代码来源:classification.py

示例6: fit_model_14

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
    def fit_model_14(self,toWrite=False):
        model = OrthogonalMatchingPursuit()

        for data in self.cv_data:
            X_train, X_test, Y_train, Y_test = data
            model.fit(X_train,Y_train)
            pred = model.predict(X_test)
            print("Model 14 score %f" % (logloss(Y_test,pred),))

        if toWrite:
            f2 = open('model14/model.pkl','w')
            pickle.dump(model,f2)
            f2.close()
开发者ID:JakeMick,项目名称:kaggle,代码行数:15,代码来源:days_work.py

示例7: test_omp_cv

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_omp_cv():
    # FIXME: This test is unstable on Travis, see issue #3190 for more detail.
    check_skip_travis()
    y_ = y[:, 0]
    gamma_ = gamma[:, 0]
    ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False,
                                        max_iter=10, cv=5)
    ompcv.fit(X, y_)
    assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs)
    assert_array_almost_equal(ompcv.coef_, gamma_)
    omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False,
                                    n_nonzero_coefs=ompcv.n_nonzero_coefs_)
    omp.fit(X, y_)
    assert_array_almost_equal(ompcv.coef_, omp.coef_)
开发者ID:0x0all,项目名称:scikit-learn,代码行数:16,代码来源:test_omp.py

示例8: SparseDeconvolution

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def SparseDeconvolution(x,y,p,rtype='omp'):
    
    from numpy import zeros, hstack, floor, array, shape, sign
    from scipy.linalg import toeplitz, norm
    from sklearn.linear_model import OrthogonalMatchingPursuit, Lasso
    
    xm = x[abs(x).argmax()]

    # x = (x.copy())/xm
    x = (x.copy())/xm
    x = x/norm(x)
    
    y = (y.copy())/xm
    
    Nx=len(x)
    Ny=len(y)
    
    X = toeplitz(hstack((x,zeros(Nx+Ny-2))),r=zeros(Ny+Nx-1))

    Y = hstack((zeros(Nx-1),y,zeros(Nx-1)))
    
    if (rtype=='omp')&(type(p)==int):
        
        model = OrthogonalMatchingPursuit(n_nonzero_coefs=p,normalize=False)
        
    elif (rtype=='omp')&(p<1.0):
                
        model = OrthogonalMatchingPursuit(tol=p,normalize=False)
        
        
    elif (rtype=='lasso'):
        
        model = Lasso(alpha=p)

    
    model.fit(X,Y)

    h = model.coef_
    b = model.intercept_
    
    return Y-b,X,h
开发者ID:lesagejonathan,项目名称:ShawCor,代码行数:43,代码来源:spr.py

示例9: CSSK

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def CSSK(h,const=5.0,noise=0.0000001):
    """Compressed Sensing replacement of Fourier Transform on 1D array h
       * REQUIRES CVXPY PACKAGE *
         h       = sampled time signal
         const   = scalar multiple dimension of h, larger values give greater
                     resolution albeit with increased cost.
         noise   = scalar constant to account for numerical noise

         returns:
         g       = fourier transform h to frequency domain using CS technique
    """

    h = np.asarray(h, dtype=float)
    Nt = len(h)
    Nw = int(const*Nt)
    t = np.arange(Nt)
    w = np.arange(Nw)
    #F = np.sin(2 * np.pi * np.outer(t,w) / Nw)
    F = (1/np.float(Nw))*np.sin(2.0*np.pi*np.outer(t,w)/np.float(Nw))

    #omp_cv = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
    #omp_cv = OrthogonalMatchingPursuitCV(verbose=True,normalize=True)
    omp_cv = OrthogonalMatchingPursuit(tol=noise)
    omp_cv.fit(F, h)
    coef = omp_cv.coef_
    #idx_r, = coef.nonzero()
    g = coef


    ### begin using cvxpy
    #g = cvx.Variable(Nw)
    ## min |g|_1 subject to |F.g - h|_2 < noise
    #objective = cvx.Minimize(cvx.norm(g,1))
    #constraints = [cvx.norm(F*g - h,2) <= noise]
    #prob = cvx.Problem(objective, constraints)
    #prob.solve(solver='SCS',verbose=True)
    #g = np.asarray(g.value)
    #g = g[:,0]
    ### end using cvxpy
    return g
开发者ID:jjgoings,项目名称:cq_realtime,代码行数:42,代码来源:cs_sklearn.py

示例10: test_estimator

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_estimator():
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
    omp.fit(X, y[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_.shape, ())
    assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)

    omp.fit(X, y)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_.shape, (n_targets,))
    assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)

    omp.set_params(fit_intercept=False, normalize=False)

    assert_warns(DeprecationWarning, omp.fit, X, y[:, 0], Gram=G, Xy=Xy[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_, 0)
    assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)

    assert_warns(DeprecationWarning, omp.fit, X, y, Gram=G, Xy=Xy)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_, 0)
    assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
开发者ID:Adrellias,项目名称:scikit-learn,代码行数:25,代码来源:test_omp.py

示例11: test_estimator_shapes

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_estimator_shapes():
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
    omp.fit(X, y[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_.shape, ())
    assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)

    omp.fit(X, y)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_.shape, (n_targets,))
    assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)

    omp.fit(X, y[:, 0], Gram=G, Xy=Xy[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_.shape, ())
    assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs)

    omp.fit(X, y, Gram=G, Xy=Xy)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_.shape, (n_targets,))
    assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
开发者ID:ashish-sadh,项目名称:scikit-learn,代码行数:23,代码来源:test_omp.py

示例12: test_estimator

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def test_estimator():
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
    omp.fit(X, y[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_.shape, ())
    assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs)

    omp.fit(X, y)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_.shape, (n_targets,))
    assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)

    omp.set_params(fit_intercept=False, normalize=False)

    omp.fit(X, y[:, 0])
    assert_equal(omp.coef_.shape, (n_features,))
    assert_equal(omp.intercept_, 0)
    assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs)

    omp.fit(X, y)
    assert_equal(omp.coef_.shape, (n_targets, n_features))
    assert_equal(omp.intercept_, 0)
    assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
开发者ID:1992huanghai,项目名称:scikit-learn,代码行数:25,代码来源:test_omp.py

示例13: sparse_encode

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
    def sparse_encode(self, X, dictionary, n_nonzero_coefs=None, verbose=0):
        omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
        omp.fit(dictionary, X.T)
        new_code = omp.coef_.T

        return new_code
开发者ID:JonnyTran,项目名称:ML-algorithms,代码行数:8,代码来源:SparseRepresentation.py

示例14: OrthogonalMatchingPursuit

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
##########################
y_noisy = y + 0.05 * np.random.randn(len(y))

# plot the sparse signal
########################
pl.figure(figsize=(7, 7))
pl.subplot(4, 1, 1)
pl.xlim(0, 512)
pl.title("Sparse signal")
pl.stem(idx, w[idx])

# plot the noise-free reconstruction
####################################

omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
pl.subplot(4, 1, 2)
pl.xlim(0, 512)
pl.title("Recovered signal from noise-free measurements")
pl.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction
###############################
omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
pl.subplot(4, 1, 3)
pl.xlim(0, 512)
pl.title("Recovered signal from noisy measurements")
开发者ID:2011200799,项目名称:scikit-learn,代码行数:33,代码来源:plot_omp.py

示例15: orthogonal_matching_pursuit

# 需要导入模块: from sklearn.linear_model import OrthogonalMatchingPursuit [as 别名]
# 或者: from sklearn.linear_model.OrthogonalMatchingPursuit import fit [as 别名]
def orthogonal_matching_pursuit(y, D):
    omp = OrthogonalMatchingPursuit()
    omp.fit(D, y)
    return omp
开发者ID:zezhouliu,项目名称:cs229r-dict-learning,代码行数:6,代码来源:KSVD.py


注:本文中的sklearn.linear_model.OrthogonalMatchingPursuit.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。