当前位置: 首页>>代码示例>>Python>>正文


Python GradientBoostingRegressor.transform方法代码示例

本文整理汇总了Python中sklearn.ensemble.GradientBoostingRegressor.transform方法的典型用法代码示例。如果您正苦于以下问题:Python GradientBoostingRegressor.transform方法的具体用法?Python GradientBoostingRegressor.transform怎么用?Python GradientBoostingRegressor.transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.GradientBoostingRegressor的用法示例。


在下文中一共展示了GradientBoostingRegressor.transform方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_feature_importances

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import transform [as 别名]
def test_feature_importances():
    X = np.array(boston.data, dtype=np.float32)
    y = np.array(boston.target, dtype=np.float32)

    clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1)
    clf.fit(X, y)
    # feature_importances = clf.feature_importances_
    assert_true(hasattr(clf, "feature_importances_"))

    X_new = clf.transform(X, threshold="mean")
    assert_less(X_new.shape[1], X.shape[1])

    feature_mask = clf.feature_importances_ > clf.feature_importances_.mean()
    assert_array_almost_equal(X_new, X[:, feature_mask])
开发者ID:Anubhav27,项目名称:scikit-learn,代码行数:16,代码来源:test_gradient_boosting.py

示例2: __init__

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import transform [as 别名]
class mixmodels:
    def __init__(self,nest=10):
        self.nest = nest
    def fit(self,data_train,target):
        self.target_train = target
        self.catcol = data_train.filter(like='var').columns.tolist()
        #start_gbr_tr = time.clock()
        self.gbr = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
        self.gbr.fit(data_train,self.target_train)
        self.transformed_train_gbr = self.gbr.transform(data_train,threshold="0.35*mean")
        self.gbr_tr_fit = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
        self.gbr_tr_fit.fit(self.transformed_train_gbr,self.target_train)
        #end_gbr_tr = time.clock()
        #print >> log, "time_gbr_tr = ", end_gbr_tr-start_gbr_tr

        #start_xfr_tr = time.clock()
        self.xfr= ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
        self.xfr.fit(data_train,self.target_train)
        self.transformed_train_xfr = self.xfr.transform(data_train,threshold="0.35*mean")
        self.xfr_tr_fit = ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
        self.xfr_tr_fit.fit(self.transformed_train_xfr,self.target_train)
        #end_xfr_tr = time.clock()
        #print >> log, "time_xfr_tr = ", end_xfr_tr-start_xfr_tr

        #start_gbr_cat = time.clock()
        self.gbr_cat_fit = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
        self.gbr_cat_fit.fit(data_train[self.catcol],self.target_train)
        #end_gbr_cat = time.clock()
        #print >> log, "time_gbr_cat = ", end_gbr_cat-start_gbr_cat

        #start_xfr_cat = time.clock()
        self.xfr_cat_fit = ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
        self.xfr_cat_fit.fit(data_train[self.catcol],self.target_train)
        #end_xfr_cat = time.clock()
        #print >> log, "time_xfr_cat = ", end_xfr_cat-start_xfr_cat
        return self

    def predict(self,data_test):
        mix_test_list = []

        transformed_test_gbr = self.gbr.transform(data_test,threshold="0.35*mean")
        mix_test_list += [pd.Series(self.gbr_tr_fit.predict(transformed_test_gbr))]

        transformed_test_xfr = self.xfr.transform(data_test,threshold="0.35*mean")
        mix_test_list += [pd.Series(self.xfr_tr_fit.predict(transformed_test_xfr))]

        mix_test_list += [pd.Series(self.gbr_cat_fit.predict(data_test[self.catcol]))]

        mix_test_list += [pd.Series(self.xfr_cat_fit.predict(data_test[self.catcol]))]

        mix_test = pd.concat(mix_test_list,1)

        mix_ave = mix_test.mean(1)
        mix_ave.name='target'

        return mix_ave
    def score(self,data_test,target_test):
        total_score = []
        transformed_test_gbr = self.gbr.transform(data_test,threshold="0.35*mean")
        total_score += [ self.gbr_tr_fit.score(transformed_test_gbr,target_test) ]
        transformed_test_xfr = self.xfr.transform(data_test,threshold="0.35*mean")
        total_score += [ self.xfr_tr_fit.score(transformed_test_xfr,target_test) ]
        total_score += [ self.gbr_cat_fit.score(data_test[self.catcol],target_test) ]
        total_score += [ self.xfr_cat_fit.score(data_test[self.catcol],target_test) ]
        return sum(total_score)/float(len(total_score))

    def gini(self,data_test,target_test):
        weight = data_test.var11
        gns = []
        transformed_test_gbr = self.gbr.transform(data_test,threshold="0.35*mean")
        gns += [normalized_weighted_gini(target_test.tolist(),self.gbr_tr_fit.predict(transformed_test_gbr).tolist(),weight.tolist()) ]
        transformed_test_xfr = self.xfr.transform(data_test,threshold="0.35*mean")
        gns += [normalized_weighted_gini(target_test.tolist(),self.xfr_tr_fit.predict(transformed_test_xfr).tolist(),weight.tolist()) ]
        gns += [normalized_weighted_gini(target_test.tolist(),self.gbr_cat_fit.predict(data_test[self.catcol]).tolist(),weight.tolist()) ]
        gns += [normalized_weighted_gini(target_test.tolist(),self.xfr_cat_fit.predict(data_test[self.catcol]).tolist(),weight.tolist()) ]
        return sum(gns)/float(len(gns))
开发者ID:kirilligum,项目名称:cdips-fire,代码行数:78,代码来源:cvbari.py


注:本文中的sklearn.ensemble.GradientBoostingRegressor.transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。