当前位置: 首页>>代码示例>>Python>>正文


Python GradientBoostingRegressor.predict方法代码示例

本文整理汇总了Python中sklearn.ensemble.GradientBoostingRegressor.predict方法的典型用法代码示例。如果您正苦于以下问题:Python GradientBoostingRegressor.predict方法的具体用法?Python GradientBoostingRegressor.predict怎么用?Python GradientBoostingRegressor.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.GradientBoostingRegressor的用法示例。


在下文中一共展示了GradientBoostingRegressor.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compute_photoz_forest

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def compute_photoz_forest(N_boosts):
    rms_test = np.zeros(len(N_boosts))
    rms_train = np.zeros(len(N_boosts))
    i_best = 0
    z_fit_best = None

    for i, Nb in enumerate(N_boosts):
        try:
            # older versions of scikit-learn
            clf = GradientBoostingRegressor(n_estimators=Nb, learn_rate=0.1,
                                            max_depth=3, random_state=0)
        except TypeError:
            clf = GradientBoostingRegressor(n_estimators=Nb, learning_rate=0.1,
                                            max_depth=3, random_state=0)
        clf.fit(mag_train, z_train)

        z_fit_train = clf.predict(mag_train)
        z_fit = clf.predict(mag_test)
        rms_train[i] = np.mean(np.sqrt((z_fit_train - z_train) ** 2))
        rms_test[i] = np.mean(np.sqrt((z_fit - z_test) ** 2))

        if rms_test[i] <= rms_test[i_best]:
            i_best = i
            z_fit_best = z_fit

    return rms_test, rms_train, i_best, z_fit_best
开发者ID:CKrawczyk,项目名称:astroML,代码行数:28,代码来源:fig_photoz_boosting.py

示例2: test_regression_synthetic

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def test_regression_synthetic():
    """Test on synthetic regression datasets used in Leo Breiman,
    `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). """
    random_state = check_random_state(1)
    regression_params = {'n_estimators': 100, 'max_depth': 4,
                         'min_samples_split': 1, 'learning_rate': 0.1,
                         'loss': 'ls'}

    # Friedman1
    X, y = datasets.make_friedman1(n_samples=1200,
                                   random_state=random_state, noise=1.0)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]
    clf = GradientBoostingRegressor()
    clf.fit(X_train, y_train)
    mse = mean_squared_error(y_test, clf.predict(X_test))
    assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse

    # Friedman2
    X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]
    clf = GradientBoostingRegressor(**regression_params)
    clf.fit(X_train, y_train)
    mse = mean_squared_error(y_test, clf.predict(X_test))
    assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse

    # Friedman3
    X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]
    clf = GradientBoostingRegressor(**regression_params)
    clf.fit(X_train, y_train)
    mse = mean_squared_error(y_test, clf.predict(X_test))
    assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse
开发者ID:ChuntheQhai,项目名称:Dota2-Heroes-Recommendation,代码行数:37,代码来源:test_gradient_boosting.py

示例3: boost2

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def boost2():
    minimum_mse = 1000000000
    min_depth = 0
    X = pd.read_csv('../data/kaggle/kaggle.X1.train.txt', header=None)
    Y = pd.read_csv('../data/kaggle/kaggle.Y.train.txt', header=None)
    Xtest = pd.read_csv('../data/kaggle/kaggle.X1.test.txt', header=None)
    Xtr, Xte, Ytr, Yte = train_test_split(X, Y, test_size=0.25, random_state=42)

    for estimators in range(700, 2000, 100):
        print "For estimators: ", estimators
        for i in range(6, 8):
            print "For max_depth: ", i
            est = GradientBoostingRegressor(n_estimators=estimators, max_depth=i, min_samples_leaf=500, warm_start=True)
            est.fit(Xtr, Ytr)
            Yhat = est.predict(Xte)
            current_mse = mean_squared_error(Yte, Yhat)
            print "For MaxDepth:", i, ", MSE:", current_mse
            if minimum_mse > current_mse:
                minimum_mse = current_mse
                min_depth = i
                min_estimator = estimators
                est2 = GradientBoostingRegressor(n_estimators=min_estimator, max_depth=min_depth, min_samples_leaf=500,
                                                 warm_start=True, verbose=True)
                est2.fit(X, Y)

    print "** minimum_mse: ", minimum_mse
    print "** min_depth: ", min_depth
    print "** min_estimator: ", min_estimator

    pred = est2.predict(Xtest)
    s = pd.Series(pred)
    s.index = s.index + 1
    s.to_csv('pyprediction.csv', header=['Prediction'], index=True, index_label='ID')
开发者ID:Gabeesh,项目名称:CS273a-Introduction-to-Machine-Learning,代码行数:35,代码来源:SKLearnTree.py

示例4: gradient_boosting

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def gradient_boosting(X,y, nf = 2, lr = .1, ne = 100):
    col_names = X.columns
    y = y.astype(float)
    Xs = X.astype(float)
    Xs_t, Xs_holdout, y_t, y_holdout = train_test_split(Xs, y, train_size=.8)
    Xs_t = Xs_t.set_index([range(len(Xs_t))])
    Xs_holdout = Xs_holdout.set_index([range(len(Xs_holdout))])
    y_t = pd.DataFrame(y_t).set_index([range(len(y_t))])
    y_holdout = pd.DataFrame(y_holdout).set_index([range(len(y_holdout))])

    kf = KFold(len(Xs_t), nf)

    output_table = []
    precisions = []
    accuracies = []
    F1s = []
    fold_count = 1
    for train_index, test_index in kf:
        results = []
        Xs_train, Xs_test = Xs_t.iloc[train_index,:], Xs_t.iloc[test_index,:]
        y_train, y_test = y_t.iloc[train_index,:], y_t.iloc[test_index,:]
        y_train = np.array(y_train)
        y_test = np.array(y_test)
        Gboost = GradientBoostingRegressor(learning_rate=lr, loss='ls', n_estimators=ne)
        Gboost.fit(Xs_train, y_train)
        pred = Gboost.predict(Xs_test)
        pred = np.array(pred)
        pred = pred.round()
        output_table.append(' ')
        output_table.append("Fold "+ str(fold_count) + ':')
        output_table.append("Precision Score: "+str(precision_score(pred, y_test)))
        output_table.append("Accuracy Score: "+ str(accuracy_score(pred, y_test)))
        output_table.append("F1 Score: "+str(f1_score(pred, y_test)))
        precisions.append(precision_score(pred, y_test))
        accuracies.append(accuracy_score(pred, y_test))
        F1s.append(f1_score(pred, y_test))
        fold_count += 1
    pred_holdout = Gboost.predict(Xs_holdout)
    pred_holdout = np.array(pred_holdout)
    pred_holdout = pred_holdout.round()
    cm = confusion_matrix(y_holdout, pred_holdout)
    TN = cm[0][0]
    FN = cm[0][1]
    TP = cm[1][1]
    FP = cm[1][0]
    print "Mean Precision: ", np.mean(precisions)
    print "Mean F1s: ", np.mean(F1s)
    print "True Positive Rate (Sensitivity): ", TP*1./(TP+FN)#cm[1][1]*1./(cm[1][1]+cm[0][1])
    print "True Negative Rate (Specificity): ", TN*1./(TN+FP)#cm[0][0]*1./(cm[0][0]+cm[1][0])
    print "Precision: ", TP*1./(TP+FP), #precision_score(pred_holdout, y_holdout)
    print "Accuracy: ", (TP+TN)*1./(TP+TN+FP+FN), #accuracy_score(pred_holdout, y_holdout)
    indices = np.argsort(Gboost.feature_importances_)
    figure = plt.figure(figsize=(10,7))
    plt.barh(np.arange(len(col_names)), Gboost.feature_importances_[indices],
             align='center', alpha=.5)
    plt.yticks(np.arange(len(col_names)), np.array(col_names)[indices], fontsize=14)
    plt.xticks(fontsize=14)
    _ = plt.xlabel('Relative importance', fontsize=18)
    return Gboost
开发者ID:Shimonzu,项目名称:Ultralinks,代码行数:61,代码来源:Ultralinks_Code.py

示例5: predict

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def predict(total_check):
    X_train, X_test = total_check[0:891,1::], total_check[891::, 1::]
    y_train = total_check[0:891,0]
    est = GradientBoostingRegressor(n_estimators=220, learning_rate=0.1,\
                                    loss='ls').fit(X_train, y_train)
    print mean_squared_error(y_train, est.predict(X_train))    
    output = est.predict(X_test)
    return output
开发者ID:PandaTime,项目名称:Data-Analysis,代码行数:10,代码来源:titanic.py

示例6: test1

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def test1():
    purchase_features = pd.read_csv('purchase_features.csv', index_col = 'report_date', parse_dates = 'report_date')
    redeem_features = pd.read_csv('redeem_features.csv', index_col = 'report_date', parse_dates = 'report_date')
    result = pd.read_csv('result.csv', index_col = 'time', parse_dates = 'time')

    purchase_trian_y = result['20140331':'20140630']['purchase']
    redeem_train_y = result['20140331':'20140630']['redeem']
    purchase_x = purchase_features['20140401':'20140630']
    redeem_x = redeem_features['20140401':'20140630']

    purchase_test_y = result['20140701':'20140731']['purchase']
    redeem_test_y = result['20140701':'20140731']['redeem']
    purchase_test_x = purchase_features['20140701':'20140731']
    redeem_test_x = redeem_features['20140701':'20140731']

    purchase_delta = delta(purchase_trian_y)
    redeem_delta = delta(redeem_train_y)

    m1 = GradientBoostingRegressor(n_estimators=250, learning_rate=0.01, max_depth=3, random_state=0, loss='lad', min_samples_split=2).fit(purchase_x.values, purchase_delta)
    m2 = GradientBoostingRegressor(n_estimators=250, learning_rate=0.01, max_depth=3, random_state=0, loss='lad', min_samples_split=2).fit(redeem_x.values, redeem_delta)

    y_p_pre = list()
    y_r_pre = list()
    last_value_p = purchase_trian_y[-1]
    last_value_r = redeem_train_y[-1]

    for i in range(31):
        if i != 0:
            purchase_test_x.ix[i, 'yesterday_purchase'] = last_value_p
            purchase_test_x.ix[i, 'yesterday_redeem'] = last_value_r
            redeem_test_x.ix[i, 'yesterday_purchase'] = last_value_p
            redeem_test_x.ix[i, 'yesterday_redeem'] = last_value_r
        if i-7 >= 0:
            purchase_test_x.ix[i, 'week1'] = y_p_pre[i-7]
            redeem_test_x.ix[i, 'week1'] = y_r_pre[i-7]
        if i-14 >= 0:
            purchase_test_x.ix[i, 'week2'] = y_p_pre[i-14]
            redeem_test_x.ix[i, 'week2'] = y_r_pre[i-14]
        if i-21 >= 0:
            purchase_test_x.ix[i, 'week3'] = y_p_pre[i-21]
            redeem_test_x.ix[i, 'week3'] = y_r_pre[i-21]
        if i-28 >= 0:
            purchase_test_x.ix[i, 'week4'] = y_p_pre[i-28]
            redeem_test_x.ix[i, 'week4'] = y_r_pre[i-28]

        p_pre = m1.predict(purchase_test_x.ix[i].values)
        p_pre += last_value_p
        last_value_p = p_pre
        r_pre = m2.predict(redeem_test_x.ix[i].values)
        r_pre += last_value_r
        last_value_r = r_pre

        y_p_pre.append(p_pre)
        y_r_pre.append(r_pre)

    print "purchage mean/var error", error(purchase_test_y, y_p_pre)
    print "redeem mean/var error", error(redeem_test_y, y_r_pre)
开发者ID:Andos25,项目名称:CodeforFundFlow,代码行数:59,代码来源:test_df.py

示例7: gbrt_training

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def gbrt_training(x,y):
    x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=42,test_size=0.5)
    t = GradientBoostingRegressor(n_estimators=100,learning_rate=0.1)
    t.fit(x_train,y_train)
    p = t.predict(x_test)
    p = map(int,p)
    print ((p-y_test)**2).mean()
    p = t.predict(x)
    p = map(int,p)
    print ((p-y)**2).mean()
    print p[:10]
    print y[:10]
开发者ID:AloneGu,项目名称:ml_algo_box,代码行数:14,代码来源:test_gbrt_grid_search.py

示例8: test

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def test(min_day_train, max_day_train, min_day_test, max_day_test, line_num=[11], features=[0, 1, 2, 3, 4, 5, 6, 7, 9]):
    print " ", min_day_train, \
        " ", max_day_train, \
        " ", min_day_test, \
        " ", max_day_test, \
        " ", line_num[0],

    data = getData.get_train_data(min_day=min_day_train, max_day=max_day_train, line_num=line_num)
    train = np.array(data)

    xtrain = train[:, features]
    ytrain = train[:, -1]

    # data = getData.get_test_data()
    # test = np.array(data)
    # xtest = test[:, 1:]

    data = getData.get_train_data(min_day=min_day_test, max_day=max_day_test, line_num=line_num)
    test = np.array(data)
    xtest = test[:, features]
    ytest = test[:, -1]

    from sklearn import linear_model
    clf = linear_model.BayesianRidge(normalize=True)
    clf.fit(xtrain, ytrain)
    yHat = clf.predict(xtest)
    print  " ",rssError(ytest, yHat),

    from sklearn import tree
    clf = tree.DecisionTreeRegressor()
    clf.fit(xtrain, ytrain)
    yHat = clf.predict(xtest)
    print " ",rssError(ytest, yHat),

    from sklearn.ensemble import GradientBoostingRegressor

    clf = GradientBoostingRegressor()
    clf.fit(xtrain, ytrain)
    yHat = clf.predict(xtest)

    print  " ",rssError(ytest, yHat),

    from sklearn.neighbors import KNeighborsRegressor
    clf = KNeighborsRegressor(n_neighbors=1)
    clf.fit(xtrain, ytrain)
    yHat = clf.predict(xtest)

    print  " ",rssError(ytest, yHat),

    clf = linear_model.LassoLars(alpha=.01, normalize=True)
    clf.fit(xtrain, ytrain)
    yHat = clf.predict(xtest)
    print  " ",rssError(ytest, yHat)
开发者ID:lioo717,项目名称:alitraffic,代码行数:55,代码来源:test.py

示例9: boosting_optimization

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def boosting_optimization(X_train, y_train, X_test, y_test):
    
    gbm = GradientBoostingRegressor(n_estimators=3000, max_depth=10)
    gbm.fit(X_train, y_train)
    
    pred = gbm.predict(X_test)
    
    print "feature importances: "
    print pd.Series(gbm.feature_importances_, index=datasets.load_boston().feature_names)
    print "staged predict: {}".format(gbm.staged_predict(X_train))
    print "predict: {}".format(gbm.predict(X_test))
    print y_test
开发者ID:jonmhong,项目名称:Boston-Housing-Prices,代码行数:14,代码来源:boston_housing.py

示例10: test_quantile_loss

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def test_quantile_loss():
    """Check if quantile loss with alpha=0.5 equals lad. """
    clf_quantile = GradientBoostingRegressor(n_estimators=100, loss="quantile", max_depth=4, alpha=0.5, random_state=7)

    clf_quantile.fit(boston.data, boston.target)
    y_quantile = clf_quantile.predict(boston.data)

    clf_lad = GradientBoostingRegressor(n_estimators=100, loss="lad", max_depth=4, random_state=7)

    clf_lad.fit(boston.data, boston.target)
    y_lad = clf_lad.predict(boston.data)
    assert_array_almost_equal(y_quantile, y_lad, decimal=4)
开发者ID:Anubhav27,项目名称:scikit-learn,代码行数:14,代码来源:test_gradient_boosting.py

示例11: grid_search

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def grid_search(X, y, split, max_features=[4,6,8,None], learning_rate=[.002,.005,.05,.1]):
		for feat in max_features:
			for learn in learning_rate:
				model = GradientBoostingRegressor(n_estimators=2000,
								learning_rate=learn,
								max_features=feat,
								subsample = .3,
								min_samples_leaf=50,
								random_state=3)
				model.fit(X[:split], y[:split])
				in_samp_score = mean_squared_error(model.predict(X[:split]), y[:split])
				out_samp_score = mean_squared_error(model.predict(X[split:]), y[split:])
				print 'learn, max_features: {},{}'.format(learn,feat)
				print 'in-sample score, out-sample score: {}, {}'.format(in_samp_score, out_samp_score)
开发者ID:cak925,项目名称:wave_energy_capstone,代码行数:16,代码来源:gb_model.py

示例12: gradient

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def gradient(X_train, y_train, y_test, X_test, file_loc, target):
	'''
	Passes to grid search function within this function to pick the best parameters for each gradient boosted model depending on the target variable we are trying to predict
	'''
	grid = grid_search(file_loc, target)
	best_params = grid.best_params_
	learn_rate = best_params['learning_rate']
	n_estimators = best_params['n_estimators']
	max_feat = best_params['max_features']
	model = GradientBoostingRegressor(learning_rate=learn_rate,  n_estimators=n_estimators, max_features=max_feat)
	model.fit(X_train, y_train)
	prediction = model.predict(X_test)
	mean_squared_error = mse(y_test, model.predict(X_test))
	r2 = model.score(X_test, y_test)
	return (mean_squared_error, r2)
开发者ID:khanzlik,项目名称:RatioClothing-Project,代码行数:17,代码来源:new_models.py

示例13: process_one_file

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def process_one_file(f):
    print f
    csv_r = csv.reader(open(f))
    csv_r.next() # jump header
    x,y=[],[]

    for r in csv_r:
        tmp_t = datetime.datetime.strptime(r[1],'%Y-%m-%d %H:%M:%S')
        hour = r[2]
        minutes = r[3]
        v_occ_min = float(r[4])
        w_occ_min = float(r[5])
        v_occ = float(r[6])
        win = float(r[7])
        wout = float(r[8])
        raw_v_occ = float(r[9])
        _y = float(r[-1])
        x.append([hour,minutes,v_occ_min,w_occ_min,v_occ,win,wout,raw_v_occ])
        y.append(_y)

    x,y=np.array(x),np.array(y)
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=233)

    t = GradientBoostingRegressor()
    t.fit(x_train,y_train)
    predict = t.predict(x_test)
    predict_all = t.predict(x)
    print 'gbrt',f_mae(predict,y_test),f_rms(predict,y_test),f_mae(predict_all,y),f_rms(predict_all,y)

    # define base models
    base_models = [GradientBoostingRegressor(n_estimators=100),
                   RandomForestRegressor(n_estimators=100, n_jobs=-1),
                   ExtraTreesRegressor(n_estimators=100, n_jobs=-1)]

    # define blending model
    blending_model = LinearRegression()

    # initialize multi-stage model
    sg = StackedGeneralizer(base_models, blending_model,
                            n_folds=N_FOLDS, verbose=VERBOSE)

    # fit model
    sg.fit(x_train,y_train)
    predict = sg.predict(x_test)
    predict_all = sg.predict(x)
    print 'stack', f_mae(predict, y_test), f_rms(predict, y_test), f_mae(predict_all, y), f_rms(predict_all, y)

    print ''
开发者ID:AloneGu,项目名称:ml_algo_box,代码行数:50,代码来源:my_example.py

示例14: pipeline

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def pipeline():
        val = data[data.watch==0]
        val_a_b = val[['item_id','store_code','a','b']]
        val_x = val.drop(['label','watch','item_id','store_code','a','b'],axis=1)

        train = data[data.watch!=0]
        train_y = train.label

        
        a = list(train.a)
        b = list(train.b)
        train_weight = []
        for i in range(len(a)):
            train_weight.append(min(a[i],b[i]))
        train_weight = np.array(train_weight)

        train_x = train.drop(['label','watch','item_id','store_code','a','b'],axis=1)

        train_x.fillna(train_x.median(),inplace=True)
        val_x.fillna(val_x.median(),inplace=True)
        

        model = GradientBoostingRegressor(loss='lad',learning_rate=0.01,n_estimators=400,subsample=0.75,max_depth=6,random_state=1024, max_features=0.75)

	#train
	model.fit(train_x,train_y, sample_weight=train_weight)


	#predict val set
	val_a_b['pred'] = model.predict(val_x)
        val_a_b.to_csv('gbrt_3.csv',index=None)
开发者ID:foxchopin,项目名称:CaiNiao-DemandForecast-StoragePlaning,代码行数:33,代码来源:gbrt.py

示例15: GBRModel

# 需要导入模块: from sklearn.ensemble import GradientBoostingRegressor [as 别名]
# 或者: from sklearn.ensemble.GradientBoostingRegressor import predict [as 别名]
def GBRModel(X_train,X_cv,y_train,y_cv):
	targets = get_target_array()
	#print len(train_features)
	#print train_features[0]

	#print len(test_features)
	n_estimators = [50, 100]#, 1500, 5000]
	max_depth = [3,8]
	

	best_GBR = None
	best_mse = float('inf')
	best_score = -float('inf')

	print "################# Performing Gradient Boosting Regression ####################### \n\n\n\n"
	for estm in n_estimators:
		for cur_depth in max_depth:
			#random_forest = RandomForestRegressor(n_estimators=estm)
			regr_GBR = GradientBoostingRegressor(n_estimators=estm, max_depth= cur_depth)
			predictor = regr_GBR.fit(X_train,y_train)
			score = regr_GBR.score(X_cv,y_cv)
			mse = np.mean((regr_GBR.predict(X_cv) - y_cv) **2)
			print "Number of estimators used: ",estm
			print "Tree depth used: ",cur_depth
			print "Residual sum of squares: %.2f "%mse
			print "Variance score: %.2f \n"%score
			if best_score <= score:
				if best_mse > mse:
					best_mse = mse
					best_score = score
					best_GBR = predictor	
	print "\nBest score: ",best_score
	print "Best mse: ",best_mse
	return best_GBR
开发者ID:SaarthakKhanna2104,项目名称:Home-Depot-Product-Search-Relevance,代码行数:36,代码来源:GBR.py


注:本文中的sklearn.ensemble.GradientBoostingRegressor.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。