本文整理汇总了Python中sklearn.ensemble.ExtraTreesRegressor.score方法的典型用法代码示例。如果您正苦于以下问题:Python ExtraTreesRegressor.score方法的具体用法?Python ExtraTreesRegressor.score怎么用?Python ExtraTreesRegressor.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.ensemble.ExtraTreesRegressor
的用法示例。
在下文中一共展示了ExtraTreesRegressor.score方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dummie_columns_extra_trees
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
def dummie_columns_extra_trees(train, test):
from sklearn.ensemble import ExtraTreesRegressor
print "-- {} --".format("Extremely Randomized Trees Regression using all but remarks")
predicting_columns = list(train._get_numeric_data().columns.values)
predicting_columns.remove("LISTPRICE")
predicting_columns.remove("SOLDPRICE")
rf = ExtraTreesRegressor(
n_estimators=300, n_jobs=-1)
rf.fit(train[predicting_columns], train["SOLDPRICE"])
score = rf.score(test[predicting_columns], test["SOLDPRICE"])
predictions = rf.predict(test[predicting_columns])
sample_predictions(test, predictions)
print "Accuracy: {}\n".format(score)
return score, predictions
示例2: simple_extremely_random_trees
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
def simple_extremely_random_trees(data_train_x, data_test_x, data_train_y, data_test_y):
from sklearn.ensemble import ExtraTreesRegressor
print "-- {} --".format("Extremely Randomized Trees Regression using all but remarks")
rf = ExtraTreesRegressor(
n_estimators=300,
n_jobs=-1
)
rf.fit(data_train_x, data_train_y)
sample_predictions(rf.predict(data_test_x), data_test_y)
score = rf.score(data_test_x, data_test_y)
cross_validated_scores = cross_val_score(
rf, data_test_x, data_test_y, cv=5)
print "MSE Accuracy: {}".format(score)
print "MSE Across 5 Folds: {}".format(cross_validated_scores)
print "95%% Confidence Interval: %0.3f (+/- %0.3f)\n" % (cross_validated_scores.mean(), cross_validated_scores.std() * 1.96)
示例3: trainRegressorsAndSave
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
def trainRegressorsAndSave(computeScore=False):
for db in dbs:
if (not os.path.exists("clfs/" + db)):
clf = ExtraTreesRegressor(n_estimators=500, random_state=1, n_jobs=-1)
saveTrainedClassifier(db, clf)
elif (computeScore):
clf = joblib.load("clfs/" + db)
if (computeScore):
print("Loading test data...")
loaded = loadDB(db + ".csv")
X_test = loaded[:, 0:-1]
y_test = loaded[:, -1]
print("Normalized score is {}".format(clf.score(X_test, y_test)))
X_test = y_test = 0
示例4: GradientBoostingRegressor
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
etr_y_predict = etr.predict(X_test)
# 使用GradientBoostingRegressor训练模型,并对测试数据做出预测,结果存储在变量gbr_y_predict中。
gbr = GradientBoostingRegressor()
gbr.fit(X_train, y_train)
gbr_y_predict = gbr.predict(X_test)
from sklearn.metrics import mean_absolute_error,mean_squared_error
# 使用R-squared、MSE以及MAE指标对默认配置的随机回归森林在测试集上进行性能评估。
print('R-squared value of RandomForestRegressor:', rfr.score(X_test, y_test))
print( 'The mean squared error of RandomForestRegressor:', mean_squared_error(y_test, rfr_y_predict))
print( 'The mean absoluate error of RandomForestRegressor:', mean_absolute_error(y_test, rfr_y_predict))
# 使用R-squared、MSE以及MAE指标对默认配置的极端回归森林在测试集上进行性能评估。
print('R-squared value of ExtraTreesRegessor:', etr.score(X_test, y_test))
print('The mean squared error of ExtraTreesRegessor:', mean_squared_error(y_test,etr_y_predict))
print('The mean absoluate error of ExtraTreesRegessor:', mean_absolute_error(y_test, etr_y_predict))
# 利用训练好的极端回归森林模型,输出每种特征对预测目标的贡献度。
print(zip(etr.feature_importances_, boston.feature_names))
featrue_importance = zip(etr.feature_importances_, boston.feature_names)
print(np.sort(list(featrue_importance), axis= 0))
# 使用R-squared、MSE以及MAE指标对默认配置的梯度提升回归树在测试集上进行性能评估。
print('R-squared value of GradientBoostingRegressor:', gbr.score(X_test, y_test))
print('The mean squared error of GradientBoostingRegressor:', mean_squared_error(y_test, gbr_y_predict))
print('The mean absoluate error of GradientBoostingRegressor:', mean_absolute_error(y_test, gbr_y_predict))
# 许多业界从事商业分析系统开发和搭建的工作者更加青睐于集成模型,
#并经常以这些模型的性能表现为基准,与新设计的其他模型性能进行比对。
示例5: open
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
with open('model.txt','wt') as f:
print >> f, xfr
with open('estimators_.txt','wt') as f:
#f.write(xfr.estimators_)
print >> f, xfr.estimators_
with open('feature_importances_.txt','wt') as f:
print >> f, xfr.feature_importances_
#with open('oob_score_.txt','wt') as f:
#print >> f, xfr.oob_score_
#with open('oob_prediction_.txt','wt') as f:
#print >> f, xfr.oob_prediction_
predict_loc_regres = xfr.predict(data_test)
if 'target_test' in locals():
score = xfr.score(data_test,target_test)
gn = normalized_weighted_gini(target_test,predict_loc_regres,data_test.var11)
end = time.clock()
#outdf = pd.DataFrame([data_test.ix[:,'id']])
if 'target_test' in locals():
target_test.columns = ['true_target']
outdf = pd.concat([data_test.ix[:,'id'].astype(int),pd.DataFrame(predict_loc_regres,columns=['target']),target_test],axis=1)
else:
outdf = pd.concat([data_test.ix[:,'id'].astype(int),pd.DataFrame(predict_loc_regres,columns=['target'])],axis=1)
out_filename = (os.path.splitext(os.path.basename(sys.argv[1]))[0]+"_predict.csv")
outdf.to_csv(out_filename,index=0)
if 'target_test' in locals():
print out_filename, score , gn
else:
示例6: print
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
score = gbr.score(X_test, Y_test)
print('Problem 2 part 4 Test score : {}'.format(score))
etr = ExtraTreesRegressor(n_estimators=100, max_depth=8,min_samples_leaf=2 )
etr.fit(X_train, Y_train)
Y_etr = etr.predict(X_test)
score = r2_score(Y_test.values, Y_etr)
print('Problem 2 part 5a Test score : {}'.format(score))
score = etr.score(X_test, Y_test)
print('Problem 2 part 5b Test score : {}'.format(score))
if(runProblem3):
from keras.models import Sequential
from keras.layers.core import Activation, Dense, Dropout
from keras.callbacks import EarlyStopping
#X = dataset[['Feature_5', 'Feature_7','Ret_MinusTwo', 'Ret_MinusOne']+['Ret_{}'.format(i) for i in range(2,121)]]
#Y = dataset['Ret_MinusZero']
#X['Feature_5'] = (X['Feature_5'] - np.mean(X['Feature_5']))/np.std(X['Feature_5'])
示例7: __init__
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
class mixmodels:
def __init__(self,nest=10):
self.nest = nest
def fit(self,data_train,target):
self.target_train = target
self.catcol = data_train.filter(like='var').columns.tolist()
#start_gbr_tr = time.clock()
self.gbr = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
self.gbr.fit(data_train,self.target_train)
self.transformed_train_gbr = self.gbr.transform(data_train,threshold="0.35*mean")
self.gbr_tr_fit = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
self.gbr_tr_fit.fit(self.transformed_train_gbr,self.target_train)
#end_gbr_tr = time.clock()
#print >> log, "time_gbr_tr = ", end_gbr_tr-start_gbr_tr
#start_xfr_tr = time.clock()
self.xfr= ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
self.xfr.fit(data_train,self.target_train)
self.transformed_train_xfr = self.xfr.transform(data_train,threshold="0.35*mean")
self.xfr_tr_fit = ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
self.xfr_tr_fit.fit(self.transformed_train_xfr,self.target_train)
#end_xfr_tr = time.clock()
#print >> log, "time_xfr_tr = ", end_xfr_tr-start_xfr_tr
#start_gbr_cat = time.clock()
self.gbr_cat_fit = GradientBoostingRegressor(n_estimators =self.nest,max_depth=7)
self.gbr_cat_fit.fit(data_train[self.catcol],self.target_train)
#end_gbr_cat = time.clock()
#print >> log, "time_gbr_cat = ", end_gbr_cat-start_gbr_cat
#start_xfr_cat = time.clock()
self.xfr_cat_fit = ExtraTreesRegressor(n_estimators =self.nest,max_depth=7)
self.xfr_cat_fit.fit(data_train[self.catcol],self.target_train)
#end_xfr_cat = time.clock()
#print >> log, "time_xfr_cat = ", end_xfr_cat-start_xfr_cat
return self
def predict(self,data_test):
mix_test_list = []
transformed_test_gbr = self.gbr.transform(data_test,threshold="0.35*mean")
mix_test_list += [pd.Series(self.gbr_tr_fit.predict(transformed_test_gbr))]
transformed_test_xfr = self.xfr.transform(data_test,threshold="0.35*mean")
mix_test_list += [pd.Series(self.xfr_tr_fit.predict(transformed_test_xfr))]
mix_test_list += [pd.Series(self.gbr_cat_fit.predict(data_test[self.catcol]))]
mix_test_list += [pd.Series(self.xfr_cat_fit.predict(data_test[self.catcol]))]
mix_test = pd.concat(mix_test_list,1)
mix_ave = mix_test.mean(1)
mix_ave.name='target'
return mix_ave
def score(self,data_test,target_test):
total_score = []
transformed_test_gbr = self.gbr.transform(data_test,threshold="0.35*mean")
total_score += [ self.gbr_tr_fit.score(transformed_test_gbr,target_test) ]
transformed_test_xfr = self.xfr.transform(data_test,threshold="0.35*mean")
total_score += [ self.xfr_tr_fit.score(transformed_test_xfr,target_test) ]
total_score += [ self.gbr_cat_fit.score(data_test[self.catcol],target_test) ]
total_score += [ self.xfr_cat_fit.score(data_test[self.catcol],target_test) ]
return sum(total_score)/float(len(total_score))
def gini(self,data_test,target_test):
weight = data_test.var11
gns = []
transformed_test_gbr = self.gbr.transform(data_test,threshold="0.35*mean")
gns += [normalized_weighted_gini(target_test.tolist(),self.gbr_tr_fit.predict(transformed_test_gbr).tolist(),weight.tolist()) ]
transformed_test_xfr = self.xfr.transform(data_test,threshold="0.35*mean")
gns += [normalized_weighted_gini(target_test.tolist(),self.xfr_tr_fit.predict(transformed_test_xfr).tolist(),weight.tolist()) ]
gns += [normalized_weighted_gini(target_test.tolist(),self.gbr_cat_fit.predict(data_test[self.catcol]).tolist(),weight.tolist()) ]
gns += [normalized_weighted_gini(target_test.tolist(),self.xfr_cat_fit.predict(data_test[self.catcol]).tolist(),weight.tolist()) ]
return sum(gns)/float(len(gns))
示例8: timeit
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import score [as 别名]
X = scaler.transform(X)
timeit("Standardizing the data")
'''
from sklearn.ensemble import ExtraTreesRegressor
#from sklearn.neighbors import KNeighborsRegressor
clf = ExtraTreesRegressor(n_estimators=10)
#clf = KNeighborsRegressor()
clf.fit(X_train, Y_train)
timeit("Training")
print "Validation score: " + str(clf.score(X_test, Y_test))
timeit("Validation")
#score = 0.
#wrong = []
#for i, item in enumerate(X_test):
# if unconvert(clf.predict(item)[0]) == unconvert(Y_test[i]):
# score += 1
# else:
# wrong.append((unconvert(clf.predict(item)[0]),unconvert(Y_test[i])))
#score /= len(X_test)
#print "Manual validation score: " + str(score)
#timeit("Manual validation")