本文整理汇总了Python中sklearn.ensemble.ExtraTreesRegressor.predict方法的典型用法代码示例。如果您正苦于以下问题:Python ExtraTreesRegressor.predict方法的具体用法?Python ExtraTreesRegressor.predict怎么用?Python ExtraTreesRegressor.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.ensemble.ExtraTreesRegressor
的用法示例。
在下文中一共展示了ExtraTreesRegressor.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mul_dtree
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def mul_dtree(X, Y2):
forest = ExtraTreesRegressor(n_estimators=5,
compute_importances=True,
random_state=0)
forest.fit(X[:200], Y2[:200])
forest.predict(X[200:])
print Y2[200:]
示例2: train
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def train(self, verbose=False, training_data=None):
n_estimators = 50
n_samples = 5000
trainingDataDict = self._getTrainingData(numSamples=n_samples)
X = np.array(trainingDataDict['rot_line_test_deriv'], dtype=np.float32)
y = np.array(trainingDataDict['solution_data'][0], dtype=np.float32)
dtr0 = ExtraTreesRegressor(n_estimators=n_estimators)
dtr0 = dtr0.fit(X, y)
X = np.array(trainingDataDict['rot_line_test_deriv'], dtype=np.float32)
y = np.array(trainingDataDict['solution_data'][1], dtype=np.float32)
dtr1 = ExtraTreesRegressor(n_estimators=n_estimators)
dtr1 = dtr1.fit(X, y)
X = np.array(trainingDataDict['scaled_img'], dtype=np.float32)
y = np.array(trainingDataDict['solution_data'][0], dtype=np.float32)
str0 = ExtraTreesRegressor(n_estimators=n_estimators)
str0 = str0.fit(X, y)
X = np.array(trainingDataDict['scaled_img'], dtype=np.float32)
y = np.array(trainingDataDict['solution_data'][1], dtype=np.float32)
str1 = ExtraTreesRegressor(n_estimators=n_estimators)
str1 = str1.fit(X, y)
trainingDataDict = self._getTrainingData(startPos=n_samples+1, numSamples=n_samples)
dtr0Pred = [dtr0.predict(trainingDataDict['rot_line_test_deriv'][i]) for i in range(len(trainingDataDict['rot_line_test_deriv']))]
dtr1Pred = [dtr1.predict(trainingDataDict['rot_line_test_deriv'][i]) for i in range(len(trainingDataDict['rot_line_test_deriv']))]
str0Pred = [str0.predict(trainingDataDict['scaled_img'][i]) for i in range(len(trainingDataDict['scaled_img']))]
str1Pred = [str1.predict(trainingDataDict['scaled_img'][i]) for i in range(len(trainingDataDict['scaled_img']))]
X = np.array([[dtr0Pred[i][0], str0Pred[i][0]] for i in xrange(len(dtr0Pred))], dtype=np.float32)
y = np.array(trainingDataDict['solution_data'][0], dtype=np.float32)
ftr0 = ExtraTreesRegressor(n_estimators=n_estimators)
ftr0 = ftr0.fit(X, y)
X = np.array([(dtr1Pred[i][0], str1Pred[i][0]) for i in xrange(len(dtr1Pred))], dtype=np.float32)
y = np.array(trainingDataDict['solution_data'][1], dtype=np.float32)
ftr1 = ExtraTreesRegressor(n_estimators=n_estimators)
ftr1 = ftr1.fit(X, y)
self.dtr0 = dtr0
self.dtr1 = dtr1
self.str0 = str0
self.str1 = str1
self.ftr0 = ftr0
self.ftr1 = ftr1
self.areModelsTrained = True
示例3: estimate
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def estimate():
from loadData import loadSets
from helper import splitDataset, separateTargetFromTrain
from sklearn.ensemble import ExtraTreesRegressor
import numpy as np
import math
best_rmsle = 2
best_i = 0
trainingSet, testingSet = loadSets()
testingSet = None
trainingData, testingData = splitDataset(trainingSet, 0.6)
testingData, validationData = splitDataset(testingData, 0.5)
trainingSet = None
trainingTarget, trainingFeatures = separateTargetFromTrain(trainingData)
testingTarget, testingFeatures = separateTargetFromTrain(testingData)
validationTarget, validationFeatures = separateTargetFromTrain(validationData)
testingTarget = testingTarget.values
validationTarget = validationTarget.values
trainingData = None
testingData = None
validationData = None
for i in range(2000, 3001, 1000):
model = ExtraTreesRegressor(n_estimators = i, n_jobs = -1)
model.fit(trainingFeatures, trainingTarget)
predictions = model.predict(testingFeatures)
cost = pow(np.log(predictions + 1) - np.log(testingTarget + 1), 2)
rmsle = math.sqrt(np.mean(cost))
print i, " estimators: ", rmsle
if rmsle < best_rmsle:
best_rmsle = rmsle
best_i = i
print "Best: ", best_i, " estimators with rmsle: ", best_rmsle
model = ExtraTreesRegressor(n_estimators = best_i, n_jobs = -1)
model.fit(trainingFeatures, trainingTarget)
predictions = model.predict(validationFeatures)
cost = pow(np.log(predictions + 1) - np.log(validationTarget + 1), 2)
rmsle = math.sqrt(np.mean(cost))
print "Final model cost: ", rmsle
示例4: do_etrees
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def do_etrees(filename):
df, Y = create_merged_dataset(filename)
etree = ExtraTreesRegressor(n_estimators=200, n_jobs=-1, min_samples_leaf=5, random_state=SEED)
X = df.drop(['driver', 'trip'], 1)
etree.fit(X, Y)
probs = etree.predict(X[:200])
return pd.DataFrame({'driver': df['driver'][:200], 'trip': df['trip'][:200], 'probs': probs})
示例5: predict_with_one
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def predict_with_one(X, out_file_name):
n_samples, n_features = X.shape
iter_num = 3
div = ShuffleSplit(n_samples, n_iter=iter_num, test_size=0.2, random_state=0)
model = ExtraTreesRegressor(n_estimators=5)
score_matrix = np.zeros((n_features, n_features))
t = time()
round_num = 0
for train, test in div:
round_num += 1
train_samples = X[np.array(train)]
test_samples = X[np.array(test)]
for i in range(n_features):
for j in range(n_features):
X_train = train_samples[:, i:i+1]
X_test = test_samples[:, i:i+1]
y_train = train_samples[:, j]
y_test = test_samples[:, j]
# for i in range(len(fl)):
# for j in range(len(fl)):
# if fl[j][1]-fl[j][0] != 1:
# continue
# X_train = train_samples[:, fl[i][0]:fl[i][1]]
# X_test = test_samples[:, fl[i][0]:fl[i][1]]
# y_train = train_samples[:, fl[j][0]]
# y_test = test_samples[:, fl[j][0]]
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
score_matrix[i, j] += mae
print('Round', round_num, '|', i, j, mae, time()-t)
np.savetxt(os.path.join(CODE_PATH, out_file_name),
score_matrix/iter_num, fmt='%.3f', delimiter=',')
示例6: build_extra_tree_regressor
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def build_extra_tree_regressor(X_test, X_train_full, y_train_full):
print "Building ExtraTrees regressor..."
etr = ExtraTreesRegressor(n_estimators=500)
etr.fit(X_train_full, y_train_full)
etr_predict = etr.predict(X_test)
return etr_predict
示例7: classify
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def classify(self):
"""Perform classification"""
clf = ETRegressor(n_estimators=500, min_samples_split=5, min_samples_leaf=2)
#pca = PCA(n_components = 400)
#self._ClassifyDriver__traindata = pca.fit_transform(self._ClassifyDriver__traindata)
#self._ClassifyDriver__testdata = pca.transform(self._ClassifyDriver__testdata)
#print self._ClassifyDriver__traindata.shape
clf.fit(self._ClassifyDriver__traindata, self._ClassifyDriver__trainlabels)
self._ClassifyDriver__y = clf.predict(self._ClassifyDriver__testdata)
示例8: extra_trees_regressor
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def extra_trees_regressor(x, y, n_estimators, max_depth):
kf = KFold(len(x), n_folds=3)
scores = []
for train_index, test_index in kf:
X_train, X_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = ExtraTreesRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=0)
clf.fit(X_train, y_train)
scores.append(mean_squared_error(clf.predict(X_test), y_test) ** 0.5)
return np.mean(scores)
示例9: reg_skl_etr
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def reg_skl_etr(param, data):
[X_tr, X_cv, y_class_tr, y_class_cv, y_reg_tr, y_reg_cv] = data
etr = ExtraTreesRegressor(n_estimators=param['n_estimators'],
max_features=param['max_features'],
n_jobs=param['n_jobs'],
random_state=param['random_state'])
etr.fit(X_tr, y_reg_tr)
pred = etr.predict(X_cv)
RMSEScore = getscoreRMSE(y_reg_cv, pred)
return RMSEScore, pred
示例10: MyExtraTreeReg
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
class MyExtraTreeReg(MyRegressor):
def __init__(self, params=dict()):
self._params = params
self._extree = ExtraTreesRegressor(**(self._params))
def update_params(self, updates):
self._params.update(updates)
self._extree = ExtraTreesRegressor(**(self._params))
def fit(self, Xtrain, ytrain):
self._extree.fit(Xtrain, ytrain)
def predict(self, Xtest, option = None):
return self._extree.predict(Xtest)
def plt_feature_importance(self, fname_list, f_range = list()):
importances = self._extree.feature_importances_
std = np.std([tree.feature_importances_ for tree in self._extree.estimators_], axis=0)
indices = np.argsort(importances)[::-1]
fname_array = np.array(fname_list)
if not f_range:
f_range = range(indices.shape[0])
n_f = len(f_range)
plt.figure()
plt.title("Extra Tree Feature importances")
plt.barh(range(n_f), importances[indices[f_range]],
color="b", xerr=std[indices[f_range]], ecolor='k',align="center")
plt.yticks(range(n_f), fname_array[indices[f_range]])
plt.ylim([-1, n_f])
plt.show()
def list_feature_importance(self, fname_list, f_range = list(), return_list = False):
importances = self._extree.feature_importances_
indices = np.argsort(importances)[::-1]
print 'Extra tree feature ranking:'
if not f_range :
f_range = range(indices.shape[0])
n_f = len(f_range)
for i in range(n_f):
f = f_range[i]
print '{0:d}. feature[{1:d}] {2:s} ({3:f})'.format(f + 1, indices[f], fname_list[indices[f]], importances[indices[f]])
if return_list:
return [indices[f_range[i]] for i in range(n_f)]
示例11: algorithm_ExtraTrees
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def algorithm_ExtraTrees(X_train,Y_train,X_validation,Y_validation, seed=7):
# 训练模型
scaler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
gbr = ExtraTreesRegressor(n_estimators=80)
gbr.fit(X=rescaledX, y=Y_train)
# 评估算法模型
rescaledX_validation = scaler.transform(X_validation)
predictions = gbr.predict(rescaledX_validation)
print(mean_squared_error(Y_validation, predictions))
示例12: __init__
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
class ModelERT:
def __init__(self, model_set_name, i_fold):
self.model_set_name = model_set_name
self.i_fold = i_fold
def set_params(self, prms):
self.prms = prms
def set_data(self, labels_tr, labels_te, data_tr, data_te):
self.labels_tr = labels_tr
self.labels_te = labels_te
self.data_tr = data_tr
self.data_te = data_te
def train(self):
print "start ert"
self.model = ExtraTreesRegressor(n_jobs=self.prms["n_jobs"],
verbose=1,
random_state=self.prms["random_state"],
n_estimators=int(self.prms["n_estimators"]),
max_features=self.prms["max_features"])
self.model.fit(self.data_tr.values, self.labels_tr)
def predict(self):
return self.model.predict(self.data_te.values)
def predict_train(self):
return self.model.predict(self.data_tr.values)
def dump_model(self):
pass
def dump_pred(self, pred, name):
folder = config.get_model_folder(self.model_set_name, self.i_fold)
Files.mkdir(folder)
path = config.get_model_path(self.model_set_name, name, self.i_fold)
joblib.dump(pred, path)
示例13: dummie_columns_extra_trees
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def dummie_columns_extra_trees(train, test):
from sklearn.ensemble import ExtraTreesRegressor
print "-- {} --".format("Extremely Randomized Trees Regression using all but remarks")
predicting_columns = list(train._get_numeric_data().columns.values)
predicting_columns.remove("LISTPRICE")
predicting_columns.remove("SOLDPRICE")
rf = ExtraTreesRegressor(
n_estimators=300, n_jobs=-1)
rf.fit(train[predicting_columns], train["SOLDPRICE"])
score = rf.score(test[predicting_columns], test["SOLDPRICE"])
predictions = rf.predict(test[predicting_columns])
sample_predictions(test, predictions)
print "Accuracy: {}\n".format(score)
return score, predictions
示例14: baseline_extra
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def baseline_extra(train_x, train_y,
test_x, test_y, n, d,
result_path="review_baseline_extra.txt"):
predict = []
clf = ExtraTreesRegressor(n_estimators=n,
max_depth=d,
random_state=0)
clf = clf.fit(train_x, train_y)
predict = clf.predict(test_x).tolist()
result = pd.DataFrame([], columns=['review_count', 'predict'])
result['review_count'] = test_y
result['predict'] = predict
result.to_csv(result_path, index=False)
rmse = mean_squared_error(predict, test_y) ** 0.5
return rmse
示例15: simple_extremely_random_trees
# 需要导入模块: from sklearn.ensemble import ExtraTreesRegressor [as 别名]
# 或者: from sklearn.ensemble.ExtraTreesRegressor import predict [as 别名]
def simple_extremely_random_trees(data_train_x, data_test_x, data_train_y, data_test_y):
from sklearn.ensemble import ExtraTreesRegressor
print "-- {} --".format("Extremely Randomized Trees Regression using all but remarks")
rf = ExtraTreesRegressor(
n_estimators=300,
n_jobs=-1
)
rf.fit(data_train_x, data_train_y)
sample_predictions(rf.predict(data_test_x), data_test_y)
score = rf.score(data_test_x, data_test_y)
cross_validated_scores = cross_val_score(
rf, data_test_x, data_test_y, cv=5)
print "MSE Accuracy: {}".format(score)
print "MSE Across 5 Folds: {}".format(cross_validated_scores)
print "95%% Confidence Interval: %0.3f (+/- %0.3f)\n" % (cross_validated_scores.mean(), cross_validated_scores.std() * 1.96)