当前位置: 首页>>代码示例>>Python>>正文


Python DummyRegressor.predict方法代码示例

本文整理汇总了Python中sklearn.dummy.DummyRegressor.predict方法的典型用法代码示例。如果您正苦于以下问题:Python DummyRegressor.predict方法的具体用法?Python DummyRegressor.predict怎么用?Python DummyRegressor.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.dummy.DummyRegressor的用法示例。


在下文中一共展示了DummyRegressor.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_quantile_strategy_multioutput_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_quantile_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    median = np.median(y_learn, axis=0).reshape((1, -1))
    quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.5)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        median, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.8)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        quantile_values, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:34,代码来源:test_dummy.py

示例2: test_regressor_prediction_independent_of_X

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_regressor_prediction_independent_of_X(strategy):
    y = [0, 2, 1, 1]
    X1 = [[0]] * 4
    reg1 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
    reg1.fit(X1, y)
    predictions1 = reg1.predict(X1)

    X2 = [[1]] * 4
    reg2 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
    reg2.fit(X2, y)
    predictions2 = reg2.predict(X2)

    assert_array_equal(predictions1, predictions2)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:15,代码来源:test_dummy.py

示例3: test_constant_strategy_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_constant_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="constant", constant=[43])
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [43] * len(X))

    reg = DummyRegressor(strategy="constant", constant=43)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [43] * len(X))
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:16,代码来源:test_dummy.py

示例4: test_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_regressor():
    X = [[0]] * 4  # ignored
    y = [1, 2, 1, 1]

    reg = DummyRegressor()
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [5. / 4] * len(X))
开发者ID:RONNCC,项目名称:scikit-learn,代码行数:9,代码来源:test_dummy.py

示例5: train_classifier

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def train_classifier():
	X_train = tfv.transform(video_captions_train)
	X_test  = tfv.transform(video_captions_test)
	
	dummy = DummyRegressor(strategy="median")
	dummy.fit(X_train, Y_train)
	Y_pred_med = dummy.predict(X_test)
开发者ID:maheer425,项目名称:youtube-conversation-prediction,代码行数:9,代码来源:train_model.py

示例6: test_dummy_regressor_on_3D_array

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_dummy_regressor_on_3D_array():
    X = np.array([[['foo']], [['bar']], [['baz']]])
    y = np.array([2, 2, 2])
    y_expected = np.array([2, 2, 2])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred = cls.predict(X)
    assert_array_equal(y_pred, y_expected)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:10,代码来源:test_dummy.py

示例7: test_dummy_regressor_on_nan_value

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_dummy_regressor_on_nan_value():
    X = [[np.NaN]]
    y = [1]
    y_expected = [1]
    clf = DummyRegressor()
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert_array_equal(y_pred, y_expected)
开发者ID:NelleV,项目名称:scikit-learn,代码行数:10,代码来源:test_dummy.py

示例8: Regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
class Regressor(BaseEstimator):
    def __init__(self):
        self.clf = DummyRegressor()

    def fit(self, X, y):
        self.clf.fit(X, y)

    def predict(self, X):
        return self.clf.predict(X)
开发者ID:pombredanne,项目名称:ramp-1,代码行数:11,代码来源:regressor.py

示例9: test_multioutput_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_multioutput_regressor():

    X_learn = np.random.randn(10, 10)
    y_learn = np.random.randn(10, 5)

    mean = np.mean(y_learn, axis=0).reshape((1, -1))

    X_test = np.random.randn(20, 10)
    y_test = np.random.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor()
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    assert_array_equal(np.tile(mean, (y_learn.shape[0], 1)), y_pred_learn)
    assert_array_equal(np.tile(mean, (y_test.shape[0], 1)), y_pred_test)
    _check_behavior_2d(est)
开发者ID:RONNCC,项目名称:scikit-learn,代码行数:21,代码来源:test_dummy.py

示例10: test_median_strategy_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_median_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="median")
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:12,代码来源:test_dummy.py

示例11: test_dummy_regressor_return_std

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_dummy_regressor_return_std():
    X = [[0]] * 3  # ignored
    y = np.array([2, 2, 2])
    y_std_expected = np.array([0, 0, 0])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred_list = cls.predict(X, return_std=True)
    # there should be two elements when return_std is True
    assert_equal(len(y_pred_list), 2)
    # the second element should be all zeros
    assert_array_equal(y_pred_list[1], y_std_expected)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:13,代码来源:test_dummy.py

示例12: test_mean_strategy_multioutput_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_mean_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    mean = np.mean(y_learn, axis=0).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor()
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:22,代码来源:test_dummy.py

示例13: test_constant_strategy_multioutput_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_constant_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    # test with 2d array
    constants = random_state.randn(5)

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="constant", constant=constants)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(constants, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d_for_constant(est)
开发者ID:jonathanwoodard,项目名称:scikit-learn,代码行数:23,代码来源:test_dummy.py

示例14: test_quantile_strategy_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def test_quantile_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="quantile", quantile=0.5)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=0)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.min(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=1)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.max(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=0.3)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X))
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:24,代码来源:test_dummy.py

示例15: _minimize_simbo_general

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import predict [as 别名]
def _minimize_simbo_general(fun,
                            x0,  # only used to get number of features
                            args=(),
                            callback=None,
                            batch_size=100,
                            population_size=10000,
                            maxiter=10000,
                            scorer=None, # if no scorer given, scores are constant
                            selector=None, # only relevant is sampler is given
                            sampler=None):
    n_iter = int(maxiter / batch_size)
    assert n_iter > 0

    dummy_generator = generative_models.DummyGenerator(len(x0))

    if scorer is None:
        scorer = DummyRegressor()
    if sampler is None:
        sampler = dummy_generator

    if isinstance(selector, float) and 0 < selector < 1:
        selector = percentile_selector(selector)

    for i in range(n_iter):
        if i == 0:
            batch = dummy_generator.sample(batch_size)
        else:
            population = sampler.sample(population_size)
            scores = scorer.predict(population)
            batch_w_score = heapq.nsmallest(batch_size, zip(scores, population),
                                            key=lambda x: x[0])
            batch = [v for score, v in batch_w_score]
        results = optimize_utils.score_multi(fun, batch, args, callback)
        selected = selector(results, batch) if selector is not None else batch
        scorer.fit(batch, results)
        sampler.fit(selected)

    best_fval, best_x = max(zip(results, batch), key=lambda x: x[0])
    nfev = batch_size * n_iter
    return optimize_utils.to_result(x=best_x, fun=best_fval,
                                    niter=n_iter, nfev=nfev)
开发者ID:diogo149,项目名称:simbo,代码行数:43,代码来源:simbo_general.py


注:本文中的sklearn.dummy.DummyRegressor.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。