当前位置: 首页>>代码示例>>Python>>正文


Python dummy.DummyRegressor类代码示例

本文整理汇总了Python中sklearn.dummy.DummyRegressor的典型用法代码示例。如果您正苦于以下问题:Python DummyRegressor类的具体用法?Python DummyRegressor怎么用?Python DummyRegressor使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DummyRegressor类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_regressor

def test_regressor():
    X = [[0]] * 4  # ignored
    y = [1, 2, 1, 1]

    reg = DummyRegressor()
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [5. / 4] * len(X))
开发者ID:RONNCC,项目名称:scikit-learn,代码行数:7,代码来源:test_dummy.py

示例2: mean_model

def mean_model(features, solutions, verbose=0):
    columns = solutions.columns
    clf = DummyRegressor()
    print('Training Model... ')
    clf.fit(features, solutions)
    print('Done Training')
    return (clf, columns)
开发者ID:jkcn90,项目名称:kaggle_galaxy_zoo,代码行数:7,代码来源:models.py

示例3: test_quantile_strategy_multioutput_regressor

def test_quantile_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    median = np.median(y_learn, axis=0).reshape((1, -1))
    quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.5)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        median, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.8)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        quantile_values, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:32,代码来源:test_dummy.py

示例4: test_y_mean_attribute_regressor

def test_y_mean_attribute_regressor():
    X = [[0]] * 5
    y = [1, 2, 4, 6, 8]
    # when strategy = 'mean'
    est = DummyRegressor(strategy='mean')
    est.fit(X, y)
    assert_equal(est.y_mean_, np.mean(y))
开发者ID:Aharobot,项目名称:scikit-learn,代码行数:7,代码来源:test_dummy.py

示例5: train_classifier

def train_classifier():
	X_train = tfv.transform(video_captions_train)
	X_test  = tfv.transform(video_captions_test)
	
	dummy = DummyRegressor(strategy="median")
	dummy.fit(X_train, Y_train)
	Y_pred_med = dummy.predict(X_test)
开发者ID:maheer425,项目名称:youtube-conversation-prediction,代码行数:7,代码来源:train_model.py

示例6: test_dummy_regressor_on_nan_value

def test_dummy_regressor_on_nan_value():
    X = [[np.NaN]]
    y = [1]
    y_expected = [1]
    clf = DummyRegressor()
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert_array_equal(y_pred, y_expected)
开发者ID:NelleV,项目名称:scikit-learn,代码行数:8,代码来源:test_dummy.py

示例7: test_dummy_regressor_on_3D_array

def test_dummy_regressor_on_3D_array():
    X = np.array([[['foo']], [['bar']], [['baz']]])
    y = np.array([2, 2, 2])
    y_expected = np.array([2, 2, 2])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred = cls.predict(X)
    assert_array_equal(y_pred, y_expected)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:8,代码来源:test_dummy.py

示例8: Regressor

class Regressor(BaseEstimator):
    def __init__(self):
        self.clf = DummyRegressor()

    def fit(self, X, y):
        self.clf.fit(X, y)

    def predict(self, X):
        return self.clf.predict(X)
开发者ID:pombredanne,项目名称:ramp-1,代码行数:9,代码来源:regressor.py

示例9: test_scorer_sample_weight

def test_scorer_sample_weight():
    # Test that scorers support sample_weight or raise sensible errors

    # Unlike the metrics invariance test, in the scorer case it's harder
    # to ensure that, on the classifier output, weighted and unweighted
    # scores really should be unequal.
    X, y = make_classification(random_state=0)
    _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
    split = train_test_split(X, y, y_ml, random_state=0)
    X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split

    sample_weight = np.ones_like(y_test)
    sample_weight[:10] = 0

    # get sensible estimators for each metric
    sensible_regr = DummyRegressor(strategy="median")
    sensible_regr.fit(X_train, y_train)
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    estimator = dict(
        [(name, sensible_regr) for name in REGRESSION_SCORERS]
        + [(name, sensible_clf) for name in CLF_SCORERS]
        + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
    )

    for name, scorer in SCORERS.items():
        if name in MULTILABEL_ONLY_SCORERS:
            target = y_ml_test
        else:
            target = y_test
        try:
            weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight)
            ignored = scorer(estimator[name], X_test[10:], target[10:])
            unweighted = scorer(estimator[name], X_test, target)
            assert_not_equal(
                weighted,
                unweighted,
                msg="scorer {0} behaves identically when "
                "called with sample weights: {1} vs "
                "{2}".format(name, weighted, unweighted),
            )
            assert_almost_equal(
                weighted,
                ignored,
                err_msg="scorer {0} behaves differently when "
                "ignoring samples and setting sample_weight to"
                " 0: {1} vs {2}".format(name, weighted, ignored),
            )

        except TypeError as e:
            assert_true(
                "sample_weight" in str(e),
                "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)),
            )
开发者ID:haadkhan,项目名称:cerebri,代码行数:56,代码来源:test_score_objects.py

示例10: test_median_strategy_regressor

def test_median_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="median")
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:10,代码来源:test_dummy.py

示例11: test_dummy_regressor_return_std

def test_dummy_regressor_return_std():
    X = [[0]] * 3  # ignored
    y = np.array([2, 2, 2])
    y_std_expected = np.array([0, 0, 0])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred_list = cls.predict(X, return_std=True)
    # there should be two elements when return_std is True
    assert_equal(len(y_pred_list), 2)
    # the second element should be all zeros
    assert_array_equal(y_pred_list[1], y_std_expected)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:11,代码来源:test_dummy.py

示例12: simplest

def simplest(cube, y, cv):
    """ just use the mean to impute the missing values
    """
    from sklearn.dummy import DummyRegressor
    clf = DummyRegressor()
    X = cube.reshape(cube.shape[0], cube.shape[1] * cube.shape[2])
    sse = np.zeros(y.shape[1])
    for train, test in cv:
        y_train, y_test = y[train], y[test]
        y_predict = clf.fit(X[train], y[train]).predict(X[test])
        sse += np.mean((y_predict - y_test) ** 2, 0)
    return sse
开发者ID:bthirion,项目名称:fMRI_PCR,代码行数:12,代码来源:script_localizer.py

示例13: _make_estimators

def _make_estimators(X_train, y_train, y_ml_train):
    # Make estimators that make sense to test various scoring methods
    sensible_regr = DummyRegressor(strategy='median')
    sensible_regr.fit(X_train, y_train)
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    return dict(
        [(name, sensible_regr) for name in REGRESSION_SCORERS] +
        [(name, sensible_clf) for name in CLF_SCORERS] +
        [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
    )
开发者ID:Erotemic,项目名称:scikit-learn,代码行数:13,代码来源:test_score_objects.py

示例14: test_multioutput_regressor

def test_multioutput_regressor():

    X_learn = np.random.randn(10, 10)
    y_learn = np.random.randn(10, 5)

    mean = np.mean(y_learn, axis=0).reshape((1, -1))

    X_test = np.random.randn(20, 10)
    y_test = np.random.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor()
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    assert_array_equal(np.tile(mean, (y_learn.shape[0], 1)), y_pred_learn)
    assert_array_equal(np.tile(mean, (y_test.shape[0], 1)), y_pred_test)
    _check_behavior_2d(est)
开发者ID:RONNCC,项目名称:scikit-learn,代码行数:19,代码来源:test_dummy.py

示例15: test_mean_strategy_multioutput_regressor

def test_mean_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    mean = np.mean(y_learn, axis=0).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor()
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:20,代码来源:test_dummy.py


注:本文中的sklearn.dummy.DummyRegressor类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。