当前位置: 首页>>代码示例>>Python>>正文


Python DummyRegressor.fit方法代码示例

本文整理汇总了Python中sklearn.dummy.DummyRegressor.fit方法的典型用法代码示例。如果您正苦于以下问题:Python DummyRegressor.fit方法的具体用法?Python DummyRegressor.fit怎么用?Python DummyRegressor.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.dummy.DummyRegressor的用法示例。


在下文中一共展示了DummyRegressor.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_regressor():
    X = [[0]] * 4  # ignored
    y = [1, 2, 1, 1]

    reg = DummyRegressor()
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [5. / 4] * len(X))
开发者ID:RONNCC,项目名称:scikit-learn,代码行数:9,代码来源:test_dummy.py

示例2: test_y_mean_attribute_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_y_mean_attribute_regressor():
    X = [[0]] * 5
    y = [1, 2, 4, 6, 8]
    # when strategy = 'mean'
    est = DummyRegressor(strategy='mean')
    est.fit(X, y)
    assert_equal(est.y_mean_, np.mean(y))
开发者ID:Aharobot,项目名称:scikit-learn,代码行数:9,代码来源:test_dummy.py

示例3: mean_model

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def mean_model(features, solutions, verbose=0):
    columns = solutions.columns
    clf = DummyRegressor()
    print('Training Model... ')
    clf.fit(features, solutions)
    print('Done Training')
    return (clf, columns)
开发者ID:jkcn90,项目名称:kaggle_galaxy_zoo,代码行数:9,代码来源:models.py

示例4: test_quantile_strategy_multioutput_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_quantile_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    median = np.median(y_learn, axis=0).reshape((1, -1))
    quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.5)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        median, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.8)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        quantile_values, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:34,代码来源:test_dummy.py

示例5: test_weights_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_weights_regressor():
    """Check weighted average regression prediction on boston dataset."""
    reg1 = DummyRegressor(strategy='mean')
    reg2 = DummyRegressor(strategy='median')
    reg3 = DummyRegressor(strategy='quantile', quantile=.2)
    ereg = VotingRegressor([('mean', reg1), ('median', reg2),
                            ('quantile', reg3)], weights=[1, 2, 10])

    X_r_train, X_r_test, y_r_train, y_r_test = \
        train_test_split(X_r, y_r, test_size=.25)

    reg1_pred = reg1.fit(X_r_train, y_r_train).predict(X_r_test)
    reg2_pred = reg2.fit(X_r_train, y_r_train).predict(X_r_test)
    reg3_pred = reg3.fit(X_r_train, y_r_train).predict(X_r_test)
    ereg_pred = ereg.fit(X_r_train, y_r_train).predict(X_r_test)

    avg = np.average(np.asarray([reg1_pred, reg2_pred, reg3_pred]), axis=0,
                     weights=[1, 2, 10])
    assert_almost_equal(ereg_pred, avg, decimal=2)

    ereg_weights_none = VotingRegressor([('mean', reg1), ('median', reg2),
                                         ('quantile', reg3)], weights=None)
    ereg_weights_equal = VotingRegressor([('mean', reg1), ('median', reg2),
                                          ('quantile', reg3)],
                                         weights=[1, 1, 1])
    ereg_weights_none.fit(X_r_train, y_r_train)
    ereg_weights_equal.fit(X_r_train, y_r_train)
    ereg_none_pred = ereg_weights_none.predict(X_r_test)
    ereg_equal_pred = ereg_weights_equal.predict(X_r_test)
    assert_almost_equal(ereg_none_pred, ereg_equal_pred, decimal=2)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:32,代码来源:test_voting.py

示例6: train_classifier

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def train_classifier():
	X_train = tfv.transform(video_captions_train)
	X_test  = tfv.transform(video_captions_test)
	
	dummy = DummyRegressor(strategy="median")
	dummy.fit(X_train, Y_train)
	Y_pred_med = dummy.predict(X_test)
开发者ID:maheer425,项目名称:youtube-conversation-prediction,代码行数:9,代码来源:train_model.py

示例7: test_dummy_regressor_on_3D_array

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_dummy_regressor_on_3D_array():
    X = np.array([[['foo']], [['bar']], [['baz']]])
    y = np.array([2, 2, 2])
    y_expected = np.array([2, 2, 2])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred = cls.predict(X)
    assert_array_equal(y_pred, y_expected)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:10,代码来源:test_dummy.py

示例8: test_dummy_regressor_on_nan_value

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_dummy_regressor_on_nan_value():
    X = [[np.NaN]]
    y = [1]
    y_expected = [1]
    clf = DummyRegressor()
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert_array_equal(y_pred, y_expected)
开发者ID:NelleV,项目名称:scikit-learn,代码行数:10,代码来源:test_dummy.py

示例9: Regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
class Regressor(BaseEstimator):
    def __init__(self):
        self.clf = DummyRegressor()

    def fit(self, X, y):
        self.clf.fit(X, y)

    def predict(self, X):
        return self.clf.predict(X)
开发者ID:pombredanne,项目名称:ramp-1,代码行数:11,代码来源:regressor.py

示例10: test_scorer_sample_weight

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_scorer_sample_weight():
    # Test that scorers support sample_weight or raise sensible errors

    # Unlike the metrics invariance test, in the scorer case it's harder
    # to ensure that, on the classifier output, weighted and unweighted
    # scores really should be unequal.
    X, y = make_classification(random_state=0)
    _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
    split = train_test_split(X, y, y_ml, random_state=0)
    X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split

    sample_weight = np.ones_like(y_test)
    sample_weight[:10] = 0

    # get sensible estimators for each metric
    sensible_regr = DummyRegressor(strategy="median")
    sensible_regr.fit(X_train, y_train)
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    estimator = dict(
        [(name, sensible_regr) for name in REGRESSION_SCORERS]
        + [(name, sensible_clf) for name in CLF_SCORERS]
        + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
    )

    for name, scorer in SCORERS.items():
        if name in MULTILABEL_ONLY_SCORERS:
            target = y_ml_test
        else:
            target = y_test
        try:
            weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight)
            ignored = scorer(estimator[name], X_test[10:], target[10:])
            unweighted = scorer(estimator[name], X_test, target)
            assert_not_equal(
                weighted,
                unweighted,
                msg="scorer {0} behaves identically when "
                "called with sample weights: {1} vs "
                "{2}".format(name, weighted, unweighted),
            )
            assert_almost_equal(
                weighted,
                ignored,
                err_msg="scorer {0} behaves differently when "
                "ignoring samples and setting sample_weight to"
                " 0: {1} vs {2}".format(name, weighted, ignored),
            )

        except TypeError as e:
            assert_true(
                "sample_weight" in str(e),
                "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)),
            )
开发者ID:haadkhan,项目名称:cerebri,代码行数:58,代码来源:test_score_objects.py

示例11: test_median_strategy_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_median_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="median")
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:12,代码来源:test_dummy.py

示例12: test_dummy_regressor_return_std

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_dummy_regressor_return_std():
    X = [[0]] * 3  # ignored
    y = np.array([2, 2, 2])
    y_std_expected = np.array([0, 0, 0])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred_list = cls.predict(X, return_std=True)
    # there should be two elements when return_std is True
    assert_equal(len(y_pred_list), 2)
    # the second element should be all zeros
    assert_array_equal(y_pred_list[1], y_std_expected)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:13,代码来源:test_dummy.py

示例13: test_regressor_prediction_independent_of_X

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_regressor_prediction_independent_of_X(strategy):
    y = [0, 2, 1, 1]
    X1 = [[0]] * 4
    reg1 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
    reg1.fit(X1, y)
    predictions1 = reg1.predict(X1)

    X2 = [[1]] * 4
    reg2 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
    reg2.fit(X2, y)
    predictions2 = reg2.predict(X2)

    assert_array_equal(predictions1, predictions2)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:15,代码来源:test_dummy.py

示例14: _make_estimators

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def _make_estimators(X_train, y_train, y_ml_train):
    # Make estimators that make sense to test various scoring methods
    sensible_regr = DummyRegressor(strategy='median')
    sensible_regr.fit(X_train, y_train)
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    return dict(
        [(name, sensible_regr) for name in REGRESSION_SCORERS] +
        [(name, sensible_clf) for name in CLF_SCORERS] +
        [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
    )
开发者ID:Erotemic,项目名称:scikit-learn,代码行数:15,代码来源:test_score_objects.py

示例15: test_constant_strategy_regressor

# 需要导入模块: from sklearn.dummy import DummyRegressor [as 别名]
# 或者: from sklearn.dummy.DummyRegressor import fit [as 别名]
def test_constant_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="constant", constant=[43])
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [43] * len(X))

    reg = DummyRegressor(strategy="constant", constant=43)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [43] * len(X))
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:16,代码来源:test_dummy.py


注:本文中的sklearn.dummy.DummyRegressor.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。