当前位置: 首页>>代码示例>>Python>>正文


Python QuadraticDiscriminantAnalysis.score方法代码示例

本文整理汇总了Python中sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.score方法的典型用法代码示例。如果您正苦于以下问题:Python QuadraticDiscriminantAnalysis.score方法的具体用法?Python QuadraticDiscriminantAnalysis.score怎么用?Python QuadraticDiscriminantAnalysis.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis的用法示例。


在下文中一共展示了QuadraticDiscriminantAnalysis.score方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_QDA

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import score [as 别名]
def get_QDA(Xtrain, Ytrain, Xtest = None , Ytest = None, verbose = 0):
    qda = QDA()
    qda.fit(Xtrain,Ytrain)
    
    scores = np.empty((2))
    if (verbose == 1):
        scores[0] = qda.score(Xtrain,Ytrain)
        print('QDA, train: {0:.02f}% '.format(scores[0]*100))
        if (type(Xtest) != type(None)):
            scores[1] = qda.score(Xtest,Ytest)
            print('QDA, test: {0:.02f}% '.format(scores[1]*100))
    return qda
开发者ID:manuwhs,项目名称:Trapyng,代码行数:14,代码来源:baseClassifiersLib.py

示例2: QuadraticDiscriminantAnalysiscls

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import score [as 别名]
class QuadraticDiscriminantAnalysiscls(object):
    """docstring for ClassName"""
    def __init__(self):
        self.qda_cls = QuadraticDiscriminantAnalysis()
        self.prediction = None
        self.train_x = None
        self.train_y = None

    def train_model(self, train_x, train_y):
        try:
            self.train_x = train_x
            self.train_y = train_y
            self.qda_cls.fit(train_x, train_y)
        except:
            print(traceback.format_exc())

    def predict(self, test_x):
        try:
            self.test_x = test_x
            self.prediction = self.qda_cls.predict(test_x)
            return self.prediction
        except:
            print(traceback.format_exc())

    def accuracy_score(self, test_y):
        try:
            # return r2_score(test_y, self.prediction)
            return self.qda_cls.score(self.test_x, test_y)
        except:
            print(traceback.format_exc())
开发者ID:obaid22192,项目名称:machine-learning,代码行数:32,代码来源:classifiers.py

示例3: range

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import score [as 别名]
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.cross_validation import train_test_split


total_score = 0
stop = 1000
for x in range(stop):
    clf = QuadraticDiscriminantAnalysis()
    data = win.getStudents()
    data_train, data_test = train_test_split(data, test_size=0.2)
    data_train_labels = [s.spec for s in data_train]
    data_test_labels = [s.spec for s in data_test]
    data_train = [s.grades for s in data_train]
    data_test = [s.grades for s in data_test]
    clf.fit(data_train, data_train_labels)
    total_score += clf.score(data_test, data_test_labels)
total_score = total_score / stop
print("all")
print(total_score)

specs = ["FK", "FM", "MN", "OE"]
for sp in specs:
    total_score = 0
    for x in range(stop):
        clf = QuadraticDiscriminantAnalysis()
        data = win.getStudents()
        data_train, data_test = train_test_split(data, test_size=0.2)
        data_train_labels = [s.spec if s.spec == sp else "NOT " + sp for s in data_train]
        data_test_labels = [s.spec if s.spec == sp else "NOT " + sp for s in data_test]
        data_train = [s.grades for s in data_train]
        data_test = [s.grades for s in data_test]
开发者ID:l-liciniuslucullus,项目名称:strident-octo-spork,代码行数:33,代码来源:qda.py

示例4: discriminatePlot

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import score [as 别名]
def discriminatePlot(X, y, cVal, titleStr=''):
    # Frederic's Robust Wrapper for discriminant analysis function.  Performs lda, qda and RF afer error checking, 
    # Generates nice plots and returns cross-validated
    # performance, stderr and base line.
    # X np array n rows x p parameters
    # y group labels n rows
    # rgb color code for each data point - should be the same for each data beloging to the same group
    # titleStr title for plots
    # returns: ldaScore, ldaScoreSE, qdaScore, qdaScoreSE, rfScore, rfScoreSE, nClasses
    
    # Global Parameters
    CVFOLDS = 10
    MINCOUNT = 10
    MINCOUNTTRAINING = 5 
    
    # Initialize Variables and clean up data
    classes, classesCount = np.unique(y, return_counts = True)  # Classes to be discriminated should be same as ldaMod.classes_
    goodIndClasses = np.array([n >= MINCOUNT for n in classesCount])
    goodInd = np.array([b in classes[goodIndClasses] for b in y])
    yGood = y[goodInd]
    XGood = X[goodInd]
    cValGood = cVal[goodInd]


    classes, classesCount = np.unique(yGood, return_counts = True) 
    nClasses = classes.size         # Number of classes or groups  

    # Do we have enough data?  
    if (nClasses < 2):
        print 'Error in ldaPLot: Insufficient classes with minimun data (%d) for discrimination analysis' % (MINCOUNT)
        return -1, -1, -1, -1 , -1, -1, -1
    cvFolds = min(min(classesCount), CVFOLDS)
    if (cvFolds < CVFOLDS):
        print 'Warning in ldaPlot: Cross-validation performed with %d folds (instead of %d)' % (cvFolds, CVFOLDS)
   
    # Data size and color values   
    nD = XGood.shape[1]                 # number of features in X
    nX = XGood.shape[0]                 # number of data points in X
    cClasses = []   # Color code for each class
    for cl in classes:
        icl = (yGood == cl).nonzero()[0][0]
        cClasses.append(np.append(cValGood[icl],1.0))
    cClasses = np.asarray(cClasses)
    myPrior = np.ones(nClasses)*(1.0/nClasses)  

    # Perform a PCA for dimensionality reduction so that the covariance matrix can be fitted.
    nDmax = int(np.fix(np.sqrt(nX/5)))
    if nDmax < nD:
        print 'Warning: Insufficient data for', nD, 'parameters. PCA projection to', nDmax, 'dimensions.' 
    nDmax = min(nD, nDmax)
    pca = PCA(n_components=nDmax)
    Xr = pca.fit_transform(XGood)
    print 'Variance explained is %.2f%%' % (sum(pca.explained_variance_ratio_)*100.0)
    
    
    # Initialise Classifiers  
    ldaMod = LDA(n_components = min(nDmax,nClasses-1), priors = myPrior, shrinkage = None, solver = 'svd') 
    qdaMod = QDA(priors = myPrior)
    rfMod = RF()   # by default assumes equal weights

        
    # Perform CVFOLDS fold cross-validation to get performance of classifiers.
    ldaScores = np.zeros(cvFolds)
    qdaScores = np.zeros(cvFolds)
    rfScores = np.zeros(cvFolds)
    skf = cross_validation.StratifiedKFold(yGood, cvFolds)
    iskf = 0
    
    for train, test in skf:
        
        # Enforce the MINCOUNT in each class for Training
        trainClasses, trainCount = np.unique(yGood[train], return_counts=True)
        goodIndClasses = np.array([n >= MINCOUNTTRAINING for n in trainCount])
        goodIndTrain = np.array([b in trainClasses[goodIndClasses] for b in yGood[train]])

        # Specity the training data set, the number of groups and priors
        yTrain = yGood[train[goodIndTrain]]
        XrTrain = Xr[train[goodIndTrain]]

        trainClasses, trainCount = np.unique(yTrain, return_counts=True) 
        ntrainClasses = trainClasses.size
        
        # Skip this cross-validation fold because of insufficient data
        if ntrainClasses < 2:
            continue
        goodInd = np.array([b in trainClasses for b in yGood[test]])    
        if (goodInd.size == 0):
            continue
           
        # Fit the data
        trainPriors = np.ones(ntrainClasses)*(1.0/ntrainClasses)
        ldaMod.priors = trainPriors
        qdaMod.priors = trainPriors
        ldaMod.fit(XrTrain, yTrain)
        qdaMod.fit(XrTrain, yTrain)        
        rfMod.fit(XrTrain, yTrain)
        

        ldaScores[iskf] = ldaMod.score(Xr[test[goodInd]], yGood[test[goodInd]])
        qdaScores[iskf] = qdaMod.score(Xr[test[goodInd]], yGood[test[goodInd]])
#.........这里部分代码省略.........
开发者ID:mschachter,项目名称:LaSP,代码行数:103,代码来源:discriminate.py

示例5: QuadDA

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import score [as 别名]
def QuadDA(X_train, y_train, X_test, y_test):
    clf = QDA()
    clf.fit(X_train, y_train)
    accuracy = clf.score(X_test, y_test)
    return accuracy
开发者ID:Tingguo,项目名称:stock,代码行数:7,代码来源:machineLearning.py

示例6: removeDuplicateRows

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import score [as 别名]
import numpy as np
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
def removeDuplicateRows(a):
    a = np.ascontiguousarray(a)
    unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
    return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))

classes = ['red','yellow','green','orange']

for index,classs in enumerate(classes):
    print (index,classs)
    if index == 0:
        data = removeDuplicateRows(np.loadtxt(classs))
        target = np.zeros(len(data))
    else:
        clsdata =  removeDuplicateRows(np.loadtxt(classs))
        data = np.append(data,clsdata,axis=0)
        target=np.append(target,np.zeros(len(clsdata))+index)
            
print (len(data), len(target))
    #print (data)\n"

X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.4,random_state=0)    
clf = QuadraticDiscriminantAnalysis().fit(X_train,y_train)
print (clf.score(X_test,y_test))
joblib.dump(clf, 'rgbClassifier.pkl') 
开发者ID:magictimelapse,项目名称:RaspberryJamSchweiz,代码行数:30,代码来源:trainML.py


注:本文中的sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。