当前位置: 首页>>代码示例>>Python>>正文


Python QuadraticDiscriminantAnalysis.predict_log_proba方法代码示例

本文整理汇总了Python中sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict_log_proba方法的典型用法代码示例。如果您正苦于以下问题:Python QuadraticDiscriminantAnalysis.predict_log_proba方法的具体用法?Python QuadraticDiscriminantAnalysis.predict_log_proba怎么用?Python QuadraticDiscriminantAnalysis.predict_log_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis的用法示例。


在下文中一共展示了QuadraticDiscriminantAnalysis.predict_log_proba方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_qda

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict_log_proba [as 别名]
def test_qda():
    # QDA classification.
    # This checks that QDA implements fit and predict and returns
    # correct values for a simple toy dataset.
    clf = QuadraticDiscriminantAnalysis()
    y_pred = clf.fit(X6, y6).predict(X6)
    assert_array_equal(y_pred, y6)

    # Assure that it works with 1D data
    y_pred1 = clf.fit(X7, y6).predict(X7)
    assert_array_equal(y_pred1, y6)

    # Test probas estimates
    y_proba_pred1 = clf.predict_proba(X7)
    assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6)
    y_log_proba_pred1 = clf.predict_log_proba(X7)
    assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8)

    y_pred3 = clf.fit(X6, y7).predict(X6)
    # QDA shouldn't be able to separate those
    assert np.any(y_pred3 != y7)

    # Classes should have at least 2 elements
    assert_raises(ValueError, clf.fit, X6, y4)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:26,代码来源:test_discriminant_analysis.py


注:本文中的sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict_log_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。