当前位置: 首页>>代码示例>>Python>>正文


Python QuadraticDiscriminantAnalysis.predict方法代码示例

本文整理汇总了Python中sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict方法的典型用法代码示例。如果您正苦于以下问题:Python QuadraticDiscriminantAnalysis.predict方法的具体用法?Python QuadraticDiscriminantAnalysis.predict怎么用?Python QuadraticDiscriminantAnalysis.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis的用法示例。


在下文中一共展示了QuadraticDiscriminantAnalysis.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: crossValidate

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
def crossValidate(attributes, outcomes, foldCount, ownFunction=True):
    	presList =[]; recallList = []
	accrList = []; fMeasList = []
	aucList = []
	testingEstimate = []

	otcmVal = list(set(outcomes))
	params = {}; featLen = 4; 

	attrFolds = getFolds(attributes,foldCount)
	otcmFolds = getFolds(outcomes,foldCount)

	testDataList = copy.copy(attrFolds)
	testOtcmList = copy.copy(otcmFolds)

	
	for itr in range(foldCount):
		trainDataList = []
		trainOtcmList = []
		for intitr in range (foldCount):
			if intitr != itr:
				trainDataList.append(attrFolds[intitr]) 
				trainOtcmList.append(otcmFolds[intitr])

		trainDataArr = 	np.array(trainDataList).reshape(-1,featLen)
		trainOtcmArr =  np.array(trainOtcmList).reshape(-1)
		testDataArr = np.array(testDataList[itr]).reshape(-1,featLen)
		testOtcmArr = np.array(testOtcmList[itr]).reshape(-1)

		if ownFunction:
			params = getParams(trainDataArr,trainOtcmArr,otcmVal,featLen)
			testingEstimate = gdaNDEstimate(testDataArr,params,otcmVal)
		else:
			#clf = LinearDiscriminantAnalysis()
			clf = QuadraticDiscriminantAnalysis()
			clf.fit(trainDataArr,trainOtcmArr)
			trainingEstimate = clf.predict(trainDataArr) 
			testingEstimate = clf.predict(testDataArr)

		if itr == 0 and len(otcmVal)==2:			
			addTitle = "Own" if ownFunction else "Inbuilt"
			metric = getMetrics(testOtcmArr,testingEstimate,otcmVal,showPlot=True,title="GDA2D Versicolor,Virginica - %s"%addTitle)
		else:
			metric = getMetrics(testOtcmArr,testingEstimate,otcmVal)
		accrList.append(metric[0])
		presList.append(metric[1])
		recallList.append(metric[2])
		fMeasList.append(metric[3])
		aucList.append(metric[4])
		
	return accrList, presList, recallList, fMeasList, aucList
开发者ID:arajago6,项目名称:MachineLearningPython,代码行数:53,代码来源:2-3_gdaND.py

示例2: create_symbol_forecast_model

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
    def create_symbol_forecast_model(self):
        # Create a lagged series of the S&P500 US stock market index
        snpret = create_lagged_series(
            self.symbol_list[0], self.model_start_date,
            self.model_end_date, lags=5
        )

        # Use the prior two days of returns as predictor
        # values, with direction as the response
        x = snpret[["Lag1", "Lag2"]]
        y = snpret["Direction"]

        # Create training and test sets, each of them is series
        start_test = self.model_start_test_date
        x_train = x[x.index < start_test]
        x_test = x[x.index >= start_test]
        y_train = y[y.index < start_test]
        y_test = y[y.index >= start_test]

        model = QuadraticDiscriminantAnalysis()
        model.fit(x_train, y_train)

        # return nd array
        pred_test = model.predict(x_test)

        print("Error Rate is {0}".format((y_test != pred_test).sum() * 1. / len(y_test)))

        return model
开发者ID:RayPeiqingHe,项目名称:MyCodeBase,代码行数:30,代码来源:snp_forecast.py

示例3: QuadraticDiscriminantAnalysiscls

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
class QuadraticDiscriminantAnalysiscls(object):
    """docstring for ClassName"""
    def __init__(self):
        self.qda_cls = QuadraticDiscriminantAnalysis()
        self.prediction = None
        self.train_x = None
        self.train_y = None

    def train_model(self, train_x, train_y):
        try:
            self.train_x = train_x
            self.train_y = train_y
            self.qda_cls.fit(train_x, train_y)
        except:
            print(traceback.format_exc())

    def predict(self, test_x):
        try:
            self.test_x = test_x
            self.prediction = self.qda_cls.predict(test_x)
            return self.prediction
        except:
            print(traceback.format_exc())

    def accuracy_score(self, test_y):
        try:
            # return r2_score(test_y, self.prediction)
            return self.qda_cls.score(self.test_x, test_y)
        except:
            print(traceback.format_exc())
开发者ID:obaid22192,项目名称:machine-learning,代码行数:32,代码来源:classifiers.py

示例4: SNPForecastingStrategy

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
class SNPForecastingStrategy(Strategy):
    """    
    Requires:
    symbol - A stock symbol on which to form a strategy on.
    bars - A DataFrame of bars for the above symbol."""

    def __init__(self, symbol, bars):
        self.symbol = symbol
        self.bars = bars
        self.create_periods()
        self.fit_model()

    def create_periods(self):
        """Create training/test periods."""
        self.start_train = datetime.datetime(2001,1,10)
        self.start_test = datetime.datetime(2005,1,1)
        self.end_period = datetime.datetime(2005,12,31)

    def fit_model(self):
        """Fits a Quadratic Discriminant Analyser to the
        US stock market index (^GPSC in Yahoo)."""
        # Create a lagged series of the S&P500 US stock market index
        snpret = create_lagged_series(self.symbol, self.start_train, 
                                      self.end_period, lags=5) 

        # Use the prior two days of returns as 
        # predictor values, with direction as the response
        X = snpret[["Lag1","Lag2"]]
        y = snpret["Direction"]

        # Create training and test sets
        X_train = X[X.index < self.start_test]
        y_train = y[y.index < self.start_test]

        # Create the predicting factors for use 
        # in direction forecasting
        self.predictors = X[X.index >= self.start_test]

        # Create the Quadratic Discriminant Analysis model
        # and the forecasting strategy
        self.model = QuadraticDiscriminantAnalysis()
        self.model.fit(X_train, y_train)

    def generate_signals(self):
        
        """Returns the DataFrame of symbols containing the signals
        to go long, short or hold (1, -1 or 0)."""
        signals = pd.DataFrame(index=self.bars.index)
        signals['signal'] = 0.0       

        # Predict the subsequent period with the QDA model
        signals['signal'] = self.model.predict(self.predictors)

        # Remove the first five signal entries to eliminate
        # NaN issues with the signals DataFrame
        signals['signal'][0:5] = 0.0
        signals['positions'] = signals['signal'].diff() 

        return signals
开发者ID:Vegeb,项目名称:strats,代码行数:61,代码来源:forecaster.py

示例5: doQDA

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
def doQDA(x,digits,s):
    myLDA = LDA()
    myLDA.fit(x.PCA[:,:s],digits.train_Labels)
    newtest = digits.test_Images -x.centers
    [email protected](x.V[:s,:])
    labels = myLDA.predict(newtest)
    errors = class_error_rate(labels.reshape(1,labels.shape[0]),digits.test_Labels)
    return errors
开发者ID:AndrewZastovnik,项目名称:Math-285-Hw3,代码行数:10,代码来源:Problem2.py

示例6: confusion

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
def confusion(digits):
    myLDA = LDA()
    x = center_matrix_SVD(digits.train_Images)
    myLDA.fit(x.PCA[:,:50],digits.train_Labels)
    newtest = digits.test_Images -x.centers
    [email protected](x.V[:50,:])
    labels = myLDA.predict(newtest)
    import sklearn.metrics as f
    print(f.confusion_matrix(digits.test_Labels,labels))
开发者ID:AndrewZastovnik,项目名称:Math-285-Hw3,代码行数:11,代码来源:Problem2.py

示例7: test_qda_regularization

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
def test_qda_regularization():
    # the default is reg_param=0. and will cause issues
    # when there is a constant variable
    clf = QuadraticDiscriminantAnalysis()
    with ignore_warnings():
        y_pred = clf.fit(X2, y6).predict(X2)
    assert np.any(y_pred != y6)

    # adding a little regularization fixes the problem
    clf = QuadraticDiscriminantAnalysis(reg_param=0.01)
    with ignore_warnings():
        clf.fit(X2, y6)
    y_pred = clf.predict(X2)
    assert_array_equal(y_pred, y6)

    # Case n_samples_in_a_class < n_features
    clf = QuadraticDiscriminantAnalysis(reg_param=0.1)
    with ignore_warnings():
        clf.fit(X5, y5)
    y_pred5 = clf.predict(X5)
    assert_array_equal(y_pred5, y5)
开发者ID:aniryou,项目名称:scikit-learn,代码行数:23,代码来源:test_discriminant_analysis.py

示例8: train_DA

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
    def train_DA(self, X, y, lda_comp, qda_reg):
        '''
        Input: 
            qda_reg - reg_param
            lda_comp - n_components
            X - data matrix (train_num, feat_num)
            y - target labels matrix (train_num, label_num)

        Output: 
            best_clf - best classifier trained (QDA/LDA)
            best_score - CV score of best classifier

        Find best DA classifier.
        '''
        n_samples, n_feat = X.shape
        cv_folds = 10
        kf = KFold(n_samples, cv_folds, shuffle=False)

        
        
        lda = LinearDiscriminantAnalysis(n_components = lda_comp)
        qda = QuadraticDiscriminantAnalysis(reg_param = qda_reg)
        score_total_lda = 0 #running total of metric score over all cv runs
        score_total_qda = 0 #running total of metric score over all cv runs
        for train_index, test_index in kf:
            X_train, X_test = X[train_index], X[test_index]
            y_train, y_test = y[train_index], y[test_index]
            
            lda.fit(X_train, y_train)
            cv_pred_lda = lda.predict(X_test)
            score_lda = eval(self.metric + '(y_test[:,None], cv_pred_lda[:,None], "' + self.task + '")')
            score_total_lda += score_lda
            
            qda.fit(X_train,y_train)
            cv_pred_qda = qda.predict(X_test)
            score_qda = eval(self.metric + '(y_test[:,None], cv_pred_lda[:,None], "' + self.task + '")')
            score_total_qda += score_qda

        score_lda = score_total_lda/cv_folds
        score_qda = score_total_qda/cv_folds
        
        # We keep the best one
        if(score_qda > score_lda):
            qda.fit(X,y)
            return qda, score_qda
        else:
            lda.fit(X,y)
            return lda, score_lda
开发者ID:ludovicth,项目名称:chalearn,代码行数:50,代码来源:myautoml.py

示例9: train_test_split

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


#define X y
X, y = data.loc[:,data.columns != 'state'].values, data.loc[:,data.columns == 'state'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

#smoteen
sme = SMOTEENN(random_state=42)
os_X,os_y = sme.fit_sample(X_train,y_train)

#QDA
clf_QDA = QuadraticDiscriminantAnalysis(store_covariances=True)
clf_QDA.fit(os_X, os_y)
y_true, y_pred = y_test, clf_QDA.predict(X_test)

#F1_score, precision, recall, specifity, G score
print "F1_score : %.4g" % metrics.f1_score(y_true, y_pred)  
print "Recall : %.4g" % metrics.recall_score(y_true, y_pred)
recall = metrics.recall_score(y_true, y_pred)  
print "Precision : %.4g" % metrics.precision_score(y_true, y_pred)
 
#Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)
print "Specifity: " , float(cnf_matrix[0,0])/(cnf_matrix[0,0]+cnf_matrix[0,1])
specifity = float(cnf_matrix[0,0])/(cnf_matrix[0,0]+cnf_matrix[0,1]) 
print "G score: " , math.sqrt(recall/ specifity) 

#Plot non-normalized confusion matrix
开发者ID:non27,项目名称:The-final-assignment,代码行数:33,代码来源:QDA+SMOTEEN.py

示例10: LogisticRegression

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
logreg = LogisticRegression().fit(X_train, y_train)
y_pred = logreg.predict(X_test)
y_pred_train = logreg.predict(X_train)
log_acc =  accuracy_score(y_pred, y_test) #0.64 highest

clf = DecisionTreeClassifier().fit(X_train, y_train)
y_pred = clf.predict(X_test)
clf_acc =  accuracy_score(y_pred, y_test) #0.61 

neigh = KNeighborsClassifier(n_neighbors=13).fit(X_train, y_train)
y_pred = neigh.predict(X_test)
nn_acc =  accuracy_score(y_pred, y_test) #0.61

quad = QuadraticDiscriminantAnalysis().fit(X_train, y_train)
y_pred = quad.predict(X_test)
quad_acc = accuracy_score(y_pred, y_test) # 0.19 very low

ldaC = LDA(solver='lsqr', shrinkage='auto').fit(X_train, y_train) #LDA with shrinkage
y_pred = ldaC.predict(X_test)
lda_acc = accuracy_score(y_pred, y_test) #0.58

#########################################
from sklearn.cross_validation import KFold
from sklearn.cross_validation import StratifiedKFold
import matplotlib.pyplot as plt

def calc_params(X, y, clf, param_values, param_name, K, metric = 'accuracy'):
    '''This function takes the classfier, the training data and labels, the name of the
    parameter to vary, a list of values to vary by, and a number of folds needed for 
    cross validation and returns a the test and train scores (accuracy or recall) and also
开发者ID:ysriram1,项目名称:Kaggle-Shelter-Animal-Outcomes,代码行数:32,代码来源:script.py

示例11: __init__

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
class road_estimation:
    def __init__(self, model_selection):
        self._train_data, self._train_targets, self._valid_data, self._valid_targets, self._test_data, self._test_targets = (
            data_load()
        )

        self._model_selection = model_selection
        self._classifier = []

    def train(self):
        if self._model_selection == "svm":
            # selected the svc in svm
            self._classifier = svm.SVC()
        elif self._model_selection == "nb":
            self._classifier = GaussianNB()
        elif self._model_selection == "knn":
            # parameter n_jobs can be set to -1 to enable parallel calculating
            self._classifier = KNeighborsClassifier(n_neighbors=7)
        elif self._model_selection == "ada":
            # Bunch of parameters, n_estimators, learning_rate
            self._classifier = AdaBoostClassifier()
        elif self._model_selection == "rf":
            # many parameters including n_jobs
            self._classifier = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1)
        elif self._model_selection == "qda":
            # complicated array like parameters, perhaps leave it default
            self._classifier = QuadraticDiscriminantAnalysis()
        else:
            print "Please refer to one classifier"

        self._classifier.fit(self._train_data, self._train_targets)
        # predict on valid data
        prediction_valid = self._classifier.predict(self._valid_data)
        # print validation result for selected model.
        print (
            "Classification report for classifier %s on valid_data:\n%s\n"
            % (self._model_selection, metrics.classification_report(self._valid_targets, prediction_valid))
        )

    def test(self):
        # predict on test data
        prediction_test = self._classifier.predict(self.test_data)
        # print test result for selected model.
        print (
            "Classification report for classifier %s on test_data:\n%s\n"
            % (self._model_selection, metrics.classification_report(self._test_targets, prediction_test))
        )

    def showPredictionImage(self):
        f = Feature()
        f.loadImage("um_000000.png")
        f.extractFeatures()
        fea_matrix = f.getFeaturesVectors()

        predict = self._classifier.predict(fea_matrix)
        image = np.copy(f.image)

        num_superpixels = np.max(f.superpixel) + 1
        for i in xrange(0, num_superpixels):
            indices = np.where(f.superpixel == i)
            if predict[i] == 1:

                image[indices[0], indices[1], 0] = 1
                image[indices[0], indices[1], 1] = 1
                image[indices[0], indices[1], 2] = 0
        plt.imshow(image)
        plt.show()
        # show prediction image with superpixels
        plt.imshow(mark_boundaries(image, superpixels))
        plt.show()
开发者ID:patriciocordova,项目名称:road-estimation,代码行数:72,代码来源:train_data.py

示例12: LinearDiscriminantAnalysis

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
trans = LinearDiscriminantAnalysis(n_components=3)
trans.fit(X,y)
X = trans.transform(X)
"""
# Split Up Data
x_train,x_valid,y_train,y_valid = train_test_split(X,y,test_size=0.3,random_state=None)

# Train classifier
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
clf = QuadraticDiscriminantAnalysis(reg_param=0.00001)
clf.fit(x_train,y_train)

# Run Predictions
from sklearn.metrics import confusion_matrix, accuracy_score
y_preds = clf.predict(x_valid)
print( confusion_matrix(y_valid,y_preds) );
print( "Accuracy: %f" % (accuracy_score(y_valid,y_preds)) );
f = open('qda_take1.txt', 'w')
f.write( str(confusion_matrix(y_valid,y_preds)) );
f.write( "\nAccuracy: %f" % (accuracy_score(y_valid,y_preds)) );
f.write( "\nclf = QuadraticDiscriminantAnalysis(0.00001)" );

# Now on to final submission
x_final = testing.iloc[:,1:].values
y_final = clf.predict(x_final).reshape([62096,]);
y_final = pd.DataFrame(y_final);
numbahs = testing['id']
df = pd.concat([numbahs,y_final],axis=1)
df.columns = ['id','country']
df.to_csv("qda_take1.csv",index=False)
开发者ID:valexandersaulys,项目名称:airbnb_kaggle_contest,代码行数:33,代码来源:qda_take1.py

示例13: QuadraticDiscriminantAnalysis

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
    #
    #        CREATE MODEL
    #
    ###########################################################################

    # Define the estimator: quadratic discriminant analysis
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

    qda = QuadraticDiscriminantAnalysis()

    qda.fit(training_data[0], training_data[1])

    from sklearn.metrics import accuracy_score

    # record the best result
    accuracies[i] = accuracy_score(test_data[1], qda.predict(test_data[0]))


mean_accuracy = accuracies.mean()
print("\n\nmean accuracy: %f" % mean_accuracy)

###############################################################################
#
#   VISUALIZE
#
###############################################################################
import matplotlib.pyplot as plt

mean_accuracies = np.zeros(shape=(n,))
for i in range(n):
    mean_accuracies[i] = accuracies[: i + 1].mean()
开发者ID:mikbuch,项目名称:pymri,代码行数:33,代码来源:qda_cross_valid.py

示例14: range

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
    for i in range(9,18):
        labels.append(2)
    for i in range(18, 27):
        labels.append(3)
    '''
    # Creation of random labels
    for i in range(0,27):
        labels.append(int(random.random() * 3) + 1)
    print (labels)
    '''
    # QDA model
    qda = QuadraticDiscriminantAnalysis()
    qda.fit(comps, labels)

    # MCC Calculation
    y_pred = qda.predict(comps)
    #print(labels)
    #print(y_pred)
    mcc = multimcc(labels,y_pred)
    print("MCC="+str(mcc))

    '''
    # Plotting QDA contour
    nx, ny = 200, 100
    x_min, x_max = np.amin(comps[:,0]), np.amax(comps[:,0])
    y_min, y_max = np.amin(comps[:,1]), np.amax(comps[:,1])
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
    Z = qda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
    Z = Z[:, 1].reshape(xx.shape)
    plt.contour(xx, yy, Z, [0.5], linewidths=5, colors = 'k', linestyles = 'dashed')
    '''
开发者ID:vikul-gupta,项目名称:wv-ml-spectra,代码行数:33,代码来源:spec_pca_qda.py

示例15: Analysis

# 需要导入模块: from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis [as 别名]
# 或者: from sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis import predict [as 别名]
plt.plot(pca.components_.reshape((2,data.shape[0],data.shape[1])))

#plt.plot(pca.explained_variance_, linewidth=2)
#plt.title('Principal Component Analysis (PCA) Feature Assessment')

# Creation of labels
labels = []
for i in range(0,27):
    labels.append(1)
for i in range(27,53):
    labels.append(2)

# LDA model
lda = QuadraticDiscriminantAnalysis()
lda.fit(comps, labels)
y_pred = lda.predict(comps)
print(labels)
print(y_pred)
mcc = matthews_corrcoef(labels,y_pred)
print("MCC="+str(mcc))


# Plotting LDA contour
nx, ny = 200, 100
x_min, x_max = np.amin(comps[:,0]), np.amax(comps[:,0])
y_min, y_max = np.amin(comps[:,1]), np.amax(comps[:,1])
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
Z = Z[:, 1].reshape(xx.shape)
plt.contour(xx, yy, Z, [0.5], linewidths=5, colors = 'k', linestyles = 'dashed')
开发者ID:FranciscaVasconcelos,项目名称:WVMachineLearning,代码行数:32,代码来源:spec_pca.py


注:本文中的sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。