当前位置: 首页>>代码示例>>Python>>正文


Python NMF.inverse_transform方法代码示例

本文整理汇总了Python中sklearn.decomposition.NMF.inverse_transform方法的典型用法代码示例。如果您正苦于以下问题:Python NMF.inverse_transform方法的具体用法?Python NMF.inverse_transform怎么用?Python NMF.inverse_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.NMF的用法示例。


在下文中一共展示了NMF.inverse_transform方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_nmf_inverse_transform

# 需要导入模块: from sklearn.decomposition import NMF [as 别名]
# 或者: from sklearn.decomposition.NMF import inverse_transform [as 别名]
def test_nmf_inverse_transform(solver):
    # Test that NMF.inverse_transform returns close values
    random_state = np.random.RandomState(0)
    A = np.abs(random_state.randn(6, 4))
    m = NMF(solver=solver, n_components=4, init='random', random_state=0,
            max_iter=1000)
    ft = m.fit_transform(A)
    A_new = m.inverse_transform(ft)
    assert_array_almost_equal(A, A_new, decimal=2)
开发者ID:kjacks21,项目名称:scikit-learn,代码行数:11,代码来源:test_nmf.py

示例2: test_nmf_inverse_transform

# 需要导入模块: from sklearn.decomposition import NMF [as 别名]
# 或者: from sklearn.decomposition.NMF import inverse_transform [as 别名]
def test_nmf_inverse_transform():
    # Test that NMF.inverse_transform returns close values
    random_state = np.random.RandomState(0)
    A = np.abs(random_state.randn(6, 4))
    m = NMF(n_components=4, init="random", random_state=0)
    m.fit_transform(A)
    t = m.transform(A)
    A_new = m.inverse_transform(t)
    assert_array_almost_equal(A, A_new, decimal=2)
开发者ID:jnothman,项目名称:scikit-learn,代码行数:11,代码来源:test_nmf.py

示例3: main

# 需要导入模块: from sklearn.decomposition import NMF [as 别名]
# 或者: from sklearn.decomposition.NMF import inverse_transform [as 别名]
def main():
	train_data, train_length = get_train_data()
	test_data, test_length, width, height = get_test_data()

	model = NMF(n_components=5, init='random', random_state=0)
	W = model.fit_transform(train_data)
	H = model.components_
	compressed_images = model.transform(test_data)
	output_images = model.inverse_transform(compressed_images)

	output_length= len(output_images)
	rgb_length = int(output_length/3)
	reconstruct_subimages = np.zeros([height*width, 25, 3], dtype=np.float32)
	for channels in range(3):
		reconstruct_subimages[:, :, int(channels)] = output_images[(rgb_length*channels):(rgb_length*(channels+1)),:]
	all_image_rec = np.zeros([25,height,width,3], dtype=np.float32)
	for x in range(width):
		for y in range(height):
			all_image_rec[:,y,x,:] = reconstruct_subimages[y * width + x,:]*255
	for numbers in range(25):
		all_image_rec[numbers, :, :, :] = cv2.cvtColor(all_image_rec[numbers, :, :, :], cv2.COLOR_BGR2RGB)
		cv2.imwrite("./Reconstruct/" + str(numbers+1) + "_" + "NMF" + ".png", all_image_rec[numbers, :, :, :])
开发者ID:shabiouyang,项目名称:ALF,代码行数:24,代码来源:NMF.py

示例4: interp_shots

# 需要导入模块: from sklearn.decomposition import NMF [as 别名]
# 或者: from sklearn.decomposition.NMF import inverse_transform [as 别名]
            new_cpsi = np.linspace(np.max( (exp_cpsi2.min(),sim_cpsi2.min()) )+0.05,
                                  np.min((exp_cpsi2.max(), sim_cpsi2.max()))-0.05,
                                  interp_num_phi,endpoint=False )
            interp_cpsi[qidx] = new_cpsi

            interp_X = interp_shots(norm_X2, interp_num_phi, sim_cpsi2, new_cpsi)
            interp_pro = interp_shots(norm_GDPpro2, interp_num_phi, exp_cpsi2, new_cpsi)
            interp_buf = interp_shots(norm_buf2, interp_num_phi, exp_cpsi2, new_cpsi)

            # transform and inverse transform
            model = NMF(n_components=10,solver='cd')
            W=model.fit_transform(interp_X)
            H=model.components_

            new_buf = model.transform(interp_buf)
            new_pro = model.transform(interp_pro)
    
            inverse_diff = model.inverse_transform(new_pro-new_buf)

            # average and error estimate

            pro[qidx] = inverse_diff.mean(0)
            err[qidx] = inverse_diff.std(0)/np.sqrt(inverse_diff.shape[0])

        grp.create_dataset('ave_cor',data=pro)
        grp.create_dataset('err',data=err)
        grp.create_dataset('num_shots',data=inverse_diff.shape[0])
        grp.create_dataset('interp_cpsi', data = interp_cpsi)
        grp.create_dataset('nnmf_n_components', data = model.n_components)

开发者ID:dermen,项目名称:loki,代码行数:31,代码来源:noise_filter_all_runs.py


注:本文中的sklearn.decomposition.NMF.inverse_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。