当前位置: 首页>>代码示例>>Python>>正文


Python LatentDirichletAllocation.partial_fit方法代码示例

本文整理汇总了Python中sklearn.decomposition.LatentDirichletAllocation.partial_fit方法的典型用法代码示例。如果您正苦于以下问题:Python LatentDirichletAllocation.partial_fit方法的具体用法?Python LatentDirichletAllocation.partial_fit怎么用?Python LatentDirichletAllocation.partial_fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.LatentDirichletAllocation的用法示例。


在下文中一共展示了LatentDirichletAllocation.partial_fit方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_lda_transform_mismatch

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import partial_fit [as 别名]
def test_lda_transform_mismatch():
    # test `n_features` mismatch in partial_fit and transform
    rng = np.random.RandomState(0)
    X = rng.randint(4, size=(20, 10))
    X_2 = rng.randint(4, size=(10, 8))

    n_topics = rng.randint(3, 6)
    lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng)
    lda.partial_fit(X)
    assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2)
开发者ID:andaag,项目名称:scikit-learn,代码行数:12,代码来源:test_online_lda.py

示例2: test_lda_partial_fit_dim_mismatch

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import partial_fit [as 别名]
def test_lda_partial_fit_dim_mismatch():
    # test `n_features` mismatch in `partial_fit`
    rng = np.random.RandomState(0)
    n_topics = rng.randint(3, 6)
    n_col = rng.randint(6, 10)
    X_1 = np.random.randint(4, size=(10, n_col))
    X_2 = np.random.randint(4, size=(10, n_col + 1))
    lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5.,
                                    total_samples=20, random_state=rng)
    lda.partial_fit(X_1)
    assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2)
开发者ID:andaag,项目名称:scikit-learn,代码行数:13,代码来源:test_online_lda.py

示例3: test_lda_partial_fit_multi_jobs

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import partial_fit [as 别名]
def test_lda_partial_fit_multi_jobs():
    # Test LDA online training with multi CPU
    rng = np.random.RandomState(0)
    n_topics, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=-1, learning_offset=5.,
                                    total_samples=30, random_state=rng)
    for i in xrange(3):
        lda.partial_fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
开发者ID:andaag,项目名称:scikit-learn,代码行数:15,代码来源:test_online_lda.py

示例4: test_lda_partial_fit

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import partial_fit [as 别名]
def test_lda_partial_fit():
    # Test LDA online learning (`partial_fit` method)
    # (same as test_lda_batch)
    rng = np.random.RandomState(0)
    n_topics, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10.,
                                    total_samples=100, random_state=rng)
    for i in xrange(3):
        lda.partial_fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert_true(tuple(sorted(top_idx)) in correct_idx_grps)
开发者ID:rsteca,项目名称:scikit-learn,代码行数:16,代码来源:test_online_lda.py

示例5: range

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import partial_fit [as 别名]
        test_scores = []        # size: (max_iter / valid_iter) * (n_splits)
        train_perplexities = []  # size: (max_iter / valid_iter) * (n_splits)
        test_perplexities = []  # size: (max_iter / valid_iter) * (n_splits)


        for i in range(int(max_iter / valid_iter)):
            train_s = []
            test_s = []
            train_p = []
            test_p = []

            print '\ntraining ', i * valid_iter + 1, '-th iteration'

            for train_index, test_index in splited_index:
                train_data, test_data = dataset[train_index], dataset[test_index]
                lda_model.partial_fit(train_data)

                train_s.append(lda_model.score(train_data))
                test_s.append(lda_model.score(test_data))

                train_p.append(lda_model.perplexity(train_data))
                test_p.append(lda_model.perplexity(test_data))

            train_scores.append(train_s)
            test_scores.append(test_s)
            train_perplexities.append(train_p)
            test_perplexities.append(test_p)

            print "train_scores: ", train_scores[i], " test_scores: ", test_scores[i], " train_perplexities: ", train_perplexities[i], " test_perplexities: ", test_perplexities[i]

开发者ID:FYP-2018,项目名称:Topic-Modeling,代码行数:31,代码来源:cross_vali+converge+exploration_numTopic.py

示例6: ScikitLda

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import partial_fit [as 别名]
class ScikitLda(object):

    def __init__(self, corpus=None, lda=None, n_topics=10,
                 max_iter=5, learning_method='online', learning_offset=50.,
                 **kwargs):
        if lda is None:
            self.lda = LatentDirichletAllocation(
                n_topics=n_topics, max_iter=max_iter,
                learning_method=learning_method,
                learning_offset=learning_offset, **kwargs)
        else:
            self.lda = lda

        self._corpus = corpus
        self._weights = None

    def fit(self):
        self.lda.fit(self.corpus.sparse_matrix())

    def partial_fit(self, corpus):
        self.lda.partial_fit(corpus.sparse_matrix())
        self._weights = None

    @property
    def topics(self):
        return self.lda.components_

    @property
    def n_topics(self):
        return self.lda.n_topics

    @property
    def corpus(self):
        return self._corpus

    @property
    def weights(self):
        if self._weights is None:
            self._weights = self.partial_weights(self.corpus)
        return self._weights

    def partial_weights(self, corpus):
        weights = self.transform(corpus)
        return (weights.T / weights.sum(axis=1)).T

    def transform(self, corpus):
        return self.lda.transform(corpus.sparse_matrix())

    def topic_words(self, n_words=10):
        topicWords = []
        topicWeightedWords = []

        for topic_idx, topic in enumerate(self.topics):
            weightedWordIdx = topic.argsort()[::-1]
            wordsInTopic = [self.corpus.word(i)
                            for i in weightedWordIdx[:n_words]]

            weights = topic / topic.sum()
            topicWeights = [(weights[i], self.corpus.word(i))
                            for i in weightedWordIdx[:n_words]]

            topicWords.append(wordsInTopic)
            topicWeightedWords.append(topicWeights)

        return (topicWords, topicWeightedWords)

    def save(self, filename):
        joblib.dump(self.lda, filename)

    @classmethod
    def load(cls, filename, corpus=None):
        lda = joblib.load(filename)
        return cls(lda=lda, corpus=corpus)
开发者ID:nlesc-sherlock,项目名称:cluster-analysis,代码行数:75,代码来源:AngularAndTSNE.py


注:本文中的sklearn.decomposition.LatentDirichletAllocation.partial_fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。