本文整理汇总了Python中sklearn.decomposition.LatentDirichletAllocation类的典型用法代码示例。如果您正苦于以下问题:Python LatentDirichletAllocation类的具体用法?Python LatentDirichletAllocation怎么用?Python LatentDirichletAllocation使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LatentDirichletAllocation类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: applyLDA2
def applyLDA2(self, number_of_clusters, country_specific_tweets):
train, feature_names = self.extractFeatures(country_specific_tweets,False)
name = "lda"
if self.results:
print("Fitting LDA model with tfidf", end= " - ")
t0 = time()
lda = LatentDirichletAllocation(n_topics=number_of_clusters, max_iter=5,
learning_method='online', learning_offset=50.,
random_state=0)
lda.fit(train)
if self.results:
print("done in %0.3fs." % (time() - t0))
parameters = lda.get_params()
topics = lda.components_
doc_topic = lda.transform(train)
top10, labels = self.printTopicCluster(topics, doc_topic, feature_names)
labels = numpy.asarray(labels)
if self.results:
print("Silhouette Coefficient {0}: {1}".format(name, metrics.silhouette_score(train, labels)))
return name, parameters, top10, labels
示例2: score_lda
def score_lda(src, dst):
##read sentence pairs to two lists
b1 = []
b2 = []
lines = 0
with open(src) as p:
for i, line in enumerate(p):
s = line.split('\t')
b1.append(s[0])
b2.append(s[1][:-1]) #remove \n
lines = i + 1
vectorizer = CountVectorizer()
vectors=vectorizer.fit_transform(b1 + b2)
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
learning_method='online', learning_offset=50.,
random_state=0)
X = lda.fit_transform(vectors)
print X.shape
b1_v = vectorizer.transform(b1)
b2_v = vectorizer.transform(b2)
b1_vecs = lda.transform(b1_v)
b2_vecs = lda.transform(b2_v)
res = [round(5*(1 - spatial.distance.cosine(b1_vecs[i], b2_vecs[i])),2) for i in range(lines)]
with open(dst, 'w') as thefile:
thefile.write("\n".join(str(i) for i in res))
示例3: plot_perplexity_batch
def plot_perplexity_batch(A_tfidf, num_docs):
print "computing perplexity vs batch size..."
max_iter = 5
num_topics = 10
batch_size = np.logspace(6, 10, 5, base=2).astype(int)
perplexity = np.zeros((len(batch_size),max_iter))
em_iter = np.zeros((len(batch_size),max_iter))
for ii, mini_batch in enumerate(batch_size):
for jj, sweep in enumerate(range(1,max_iter+1)):
lda = LatentDirichletAllocation(n_topics = num_topics, max_iter=sweep, learning_method='online', batch_size = mini_batch, random_state=0, n_jobs=-1)
tic = time()
lda.fit(A_tfidf) #online VB
toc = time()
print "sweep %d, elapsed time: %.4f sec" %(sweep, toc - tic)
perplexity[ii,jj] = lda.perplexity(A_tfidf)
em_iter[ii,jj] = lda.n_batch_iter_
#end
#end
np.save('./data/perplexity.npy', perplexity)
np.save('./data/em_iter.npy', em_iter)
f = plt.figure()
for mb in range(len(batch_size)):
plt.plot(em_iter[mb,:], perplexity[mb,:], color=np.random.rand(3,), marker='o', lw=2.0, label='mini_batch: '+str(batch_size[mb]))
plt.title('Perplexity (LDA, online VB)')
plt.xlabel('EM iter')
plt.ylabel('Perplexity')
plt.grid(True)
plt.legend()
plt.show()
f.savefig('./figures/perplexity_batch.png')
示例4: get_features
def get_features(vocab):
vectorizer_head = TfidfVectorizer(vocabulary=vocab, use_idf=False, norm='l2')
X_train_head = vectorizer_head.fit_transform(headlines)
vectorizer_body = TfidfVectorizer(vocabulary=vocab, use_idf=False, norm='l2')
X_train_body = vectorizer_body.fit_transform(bodies)
# calculates n most important topics of the bodies. Each topic contains all words but ordered by importance. The
# more important topic words a body contains of a certain topic, the higher its value for this topic
lda_body = LatentDirichletAllocation(n_topics=n_topics, learning_method='online', random_state=0, n_jobs=3)
print("latent_dirichlet_allocation_cos: fit and transform body")
t0 = time()
lda_body_matrix = lda_body.fit_transform(X_train_body)
print("done in %0.3fs." % (time() - t0))
print("latent_dirichlet_allocation_cos: transform head")
# use the lda trained for body topcis on the headlines => if the headlines and bodies share topics
# their vectors should be similar
lda_head_matrix = lda_body.transform(X_train_head)
#print_top_words(lda_body, vectorizer_body.get_feature_names(), 100)
print('latent_dirichlet_allocation_cos: calculating cosine distance between head and body')
# calculate cosine distance between the body and head
X = []
for i in range(len(lda_head_matrix)):
X_head_vector = np.array(lda_head_matrix[i]).reshape((1, -1)) #1d array is deprecated
X_body_vector = np.array(lda_body_matrix[i]).reshape((1, -1))
cos_dist = cosine_distances(X_head_vector, X_body_vector).flatten()
X.append(cos_dist.tolist())
return X
示例5: plot_perplexity_iter
def plot_perplexity_iter(A_tfidf, num_topics):
print "computing perplexity vs iter..."
max_iter = 5
perplexity = []
em_iter = []
for sweep in range(1,max_iter+1):
lda = LatentDirichletAllocation(n_topics = num_topics, max_iter=sweep, learning_method='online', batch_size = 512, random_state=0, n_jobs=-1)
tic = time()
lda.fit(A_tfidf) #online VB
toc = time()
print "sweep %d, elapsed time: %.4f sec" %(sweep, toc - tic)
perplexity.append(lda.perplexity(A_tfidf))
em_iter.append(lda.n_batch_iter_)
#end
np.save('./data/perplexity_iter.npy', perplexity)
f = plt.figure()
plt.plot(em_iter, perplexity, color='b', marker='o', lw=2.0, label='perplexity')
plt.title('Perplexity (LDA, online VB)')
plt.xlabel('EM iter')
plt.ylabel('Perplexity')
plt.grid(True)
plt.legend()
plt.show()
f.savefig('./figures/perplexity_iter.png')
示例6: LDA
def LDA(tf,word):
lda = LatentDirichletAllocation(n_topics=30, max_iter=5,
learning_method='online',
learning_offset=50.,
random_state=0)
lda.fit(tf)
print_top_words(lda,word,20)
示例7: lda_tuner
def lda_tuner(ingroup_otu, best_models):
best_score = -1*np.inf
dtp_series = [0.0001, 0.001, 0.01, 0.1, 0.2]
twp_series = [0.0001, 0.001, 0.01, 0.1, 0.2]
topic_series = [3]
X = ingroup_otu.values
eval_counter = 0
for topics in topic_series:
for dtp in dtp_series:
for twp in twp_series:
eval_counter +=1
X_train, X_test = train_test_split(X, test_size=0.5)
lda = LatentDirichletAllocation(n_topics=topics,
doc_topic_prior=dtp,
topic_word_prior=twp,
learning_method='batch',
random_state=42,
max_iter=20)
lda.fit(X_train)
this_score = lda.score(X_test)
this_perplexity = lda.perplexity(X_test)
if this_score > best_score:
best_score = this_score
print "New Max Likelihood: {}".format(best_score)
print "#{}: n:{}, dtp:{}, twp:{}, score:{}, perp:{}".format(eval_counter,
topics, dtp, twp,
this_score, this_perplexity)
best_models.append({'n': topics, 'dtp': dtp, 'twp': twp,
'score': this_score, 'perp': this_perplexity})
if (dtp == dtp_series[-1]) and (twp == twp_series[-1]):
eval_counter +=1
X_train, X_test = train_test_split(X, test_size=0.5)
lda = LatentDirichletAllocation(n_topics=topics,
doc_topic_prior=1./topics,
topic_word_prior=1./topics,
learning_method='batch',
random_state=42,
max_iter=20)
lda.fit(X_train)
this_score = lda.score(X_test)
this_perplexity = lda.perplexity(X_test)
if this_score > best_score:
best_score = this_score
print "New Max Likelihood: {}".format(best_score)
print "#{}: n:{}, dtp:{}, twp:{}, score:{} perp: {}".format(eval_counter,
topics,
(1./topics),
(1./topics),
this_score,
this_perplexity)
best_models.append({'n': topics, 'dtp': (1./topics),
'twp': (1./topics), 'score': this_score,
'perp': this_perplexity})
return best_models
示例8: _get_model_LDA
def _get_model_LDA(self, corpus):
#lda = models.LdaModel(corpus, id2word=self.corpus.dictionary, num_topics=5, alpha='auto', eval_every=50)
lda = LatentDirichletAllocation(n_topics=self.num_of_clusters, max_iter=20,
learning_method='online',
learning_offset=50.,
random_state=1)
return lda.fit_transform(corpus)
示例9: produceLDATopics
def produceLDATopics():
'''
Takes description of each game and uses sklearn's latent dirichlet allocation and count vectorizer
to extract topics.
:return: pandas data frame with topic weights for each game (rows) and topic (columns)
'''
data_samples, gameNames = create_game_profile_df(game_path)
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english')
tf = tf_vectorizer.fit_transform(data_samples)
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
learning_method='online', learning_offset=50.,
random_state=0)
topics = lda.fit_transform(tf)
# for i in range(50):
# gameTopics = []
# for j in range(len(topics[0])):
# if topics[i,j] > 1.0/float(n_topics):
# gameTopics.append(j)
# print gameNames[i], gameTopics
topicsByGame = pandas.DataFrame(topics)
topicsByGame.index = gameNames
print topicsByGame
tf_feature_names = tf_vectorizer.get_feature_names()
for topic_idx, topic in enumerate(lda.components_):
print("Topic #%d:" % topic_idx)
print(" ".join([tf_feature_names[i]
for i in topic.argsort()[:-n_top_words - 1:-1]]))
return topicsByGame
示例10: fit_lda
def fit_lda(tf):
'''takes in a tf sparse vector and finds the top topics'''
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', learning_offset=50., random_state=0)
lda.fit(tf)
tf_feature_names = tf_vectorizer.get_feature_names()
lda_topic_dict = print_top_words(lda, tf_feature_names, n_top_words)
return lda, lda_topic_dict
示例11: basic_lda
def basic_lda(df, n_topics=200, max_df=0.5, min_df=5):
'''
Basic LDA model for album recommendations
Args:
df: dataframe with Pitchfork reviews
n_topics: number of lda topics
max_df: max_df in TfidfVectorizer
min_df: min_df in TfidfVectorizer
Returns:
tfidf: sklearn fitted TfidfVectorizer
tfidf_trans: sparse matrix with tfidf transformed data
lda: sklearn fitted LatentDirichletAllocation
lda_trans: dense array with lda transformed data
'''
X = df['review']
cv = CountVectorizer(stop_words='english',
min_df=5,
max_df=0.5)
cv_trans = cv.fit_transform(X)
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=7)
lda_trans = lda.fit_transform(cv_trans)
return cv, cv_trans, lda, lda_trans
示例12: plot_perplexity_topics
def plot_perplexity_topics(A_tfidf):
print "computing perplexity vs K..."
max_iter = 5 #based on plot_perplexity_iter()
#num_topics = np.linspace(2,20,5).astype(np.int)
num_topics = np.logspace(1,2,5).astype(np.int)
perplexity = []
em_iter = []
for k in num_topics:
lda = LatentDirichletAllocation(n_topics = k, max_iter=max_iter, learning_method='online', batch_size = 512, random_state=0, n_jobs=-1)
tic = time()
lda.fit(A_tfidf) #online VB
toc = time()
print "K= %d, elapsed time: %.4f sec" %(k, toc - tic)
perplexity.append(lda.perplexity(A_tfidf))
em_iter.append(lda.n_batch_iter_)
#end
np.save('./data/perplexity_topics.npy', perplexity)
np.save('./data/perplexity_topics2.npy', num_topics)
f = plt.figure()
plt.plot(num_topics, perplexity, color='b', marker='o', lw=2.0, label='perplexity')
plt.title('Perplexity (LDA, online VB)')
plt.xlabel('Number of Topics, K')
plt.ylabel('Perplexity')
plt.grid(True)
plt.legend()
plt.show()
f.savefig('./figures/perplexity_topics.png')
示例13: extractTopicLDA
def extractTopicLDA(func_message_dic, store_cloumn):
if len(func_message_dic) == 0:
print "func_message_dic is null"
return False
try:
conn=MySQLdb.connect(host='192.168.162.122',user='wangyu',passwd='123456',port=3306)
cur=conn.cursor()
cur.execute('set names utf8mb4')
conn.select_db('codeAnalysis')
for function in func_message_dic:
message = func_message_dic[function]
np_extractor = nlp.semantics_extraction.NPExtractor(message)
text = np_extractor.extract()
if len(text) == 0:
continue
tf_vectorizer = CountVectorizer(max_df=1.0, min_df=1, max_features=n_features, stop_words='english')
tf = tf_vectorizer.fit_transform(text)
print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..." % (n_samples, n_features))
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', learning_offset=50.,
random_state=0)
lda.fit(tf)
tf_feature_names = tf_vectorizer.get_feature_names()
seprator = " "
for topic_idx, topic in enumerate(lda.components_):
keywords = seprator.join([tf_feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])
sql = "update func_semantic set "+store_cloumn+" = '"+keywords+"' where func_name = '"+function+"'"
print sql
cur.execute(sql)
conn.commit()
cur.close()
conn.close()
return True
except MySQLdb.Error,e:
print e
raise
示例14: topicmodel
def topicmodel( comments ):
_texts = []
texts = []
for c in comments:
c = c['text']
_texts.append( c )
texts.append( c )
tf_vectorizer = CountVectorizer(
max_df=.20,
min_df=10,
stop_words = stopwords )
texts = tf_vectorizer.fit_transform( texts )
## test between 2 and 20 topics
topics = {}
for k in range(2, 10):
print "Testing", k
model = LatentDirichletAllocation(
n_topics= k ,
max_iter=5,
learning_method='batch',
learning_offset=50.,
random_state=0
)
model.fit( texts )
ll = model.score( texts )
topics[ ll ] = model
topic = max( topics.keys() )
ret = collections.defaultdict( list )
## ugly, rewrite some day
model = topics[ topic ]
## for debug pront chosen models' names
feature_names = tf_vectorizer.get_feature_names()
for topic_idx, topic in enumerate(model.components_):
print "Topic #%d:" % topic_idx
print " ".join( [feature_names[i].encode('utf8') for i in topic.argsort()[:-5 - 1:-1]])
print
for i, topic in enumerate( model.transform( texts ) ):
topic = numpy.argmax( topic )
text = _texts[ i ].encode('utf8')
ret[ topic ].append( text )
return ret
示例15: latdirall
def latdirall(content):
lda = LatentDirichletAllocation(n_topics=10)
tf_vectorizer = TfidfVectorizer(max_df=0.99, min_df=1,
stop_words='english')
tf = tf_vectorizer.fit_transform(content)
lolz = lda.fit_transform(tf)
tfidf_feature_names = tf_vectorizer.get_feature_names()
return top_topics(lda, tfidf_feature_names, 10)