当前位置: 首页>>代码示例>>Python>>正文


Python LatentDirichletAllocation.get_params方法代码示例

本文整理汇总了Python中sklearn.decomposition.LatentDirichletAllocation.get_params方法的典型用法代码示例。如果您正苦于以下问题:Python LatentDirichletAllocation.get_params方法的具体用法?Python LatentDirichletAllocation.get_params怎么用?Python LatentDirichletAllocation.get_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.LatentDirichletAllocation的用法示例。


在下文中一共展示了LatentDirichletAllocation.get_params方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: applyLDA2

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import get_params [as 别名]
    def applyLDA2(self, number_of_clusters, country_specific_tweets):
        train, feature_names = self.extractFeatures(country_specific_tweets,False)
        
        name = "lda"
        if self.results:
            print("Fitting LDA model with tfidf", end= " - ")
        t0 = time()     
        lda = LatentDirichletAllocation(n_topics=number_of_clusters, max_iter=5,
                                        learning_method='online', learning_offset=50.,
                                        random_state=0)

        lda.fit(train)
        
        if self.results:
            print("done in %0.3fs." % (time() - t0))
        
        parameters = lda.get_params()
        topics = lda.components_
        doc_topic = lda.transform(train)
        top10, labels = self.printTopicCluster(topics, doc_topic, feature_names)
        labels = numpy.asarray(labels)
        
        if self.results:
            print("Silhouette Coefficient {0}: {1}".format(name, metrics.silhouette_score(train, labels)))
        
        return name, parameters, top10, labels
开发者ID:michaelprummer,项目名称:datascience,代码行数:28,代码来源:clustering.py

示例2: LatentDirichletAllocation

# 需要导入模块: from sklearn.decomposition import LatentDirichletAllocation [as 别名]
# 或者: from sklearn.decomposition.LatentDirichletAllocation import get_params [as 别名]
    print "number of docs: %d" %A_tfidf_sp.shape[0]
    print "dictionary size: %d" %A_tfidf_sp.shape[1]

    #tf-idf dictionary    
    tfidf_dict = tfidf.get_feature_names()
             
    #fit LDA model
    print "Fitting LDA model..."
    lda_vb = LatentDirichletAllocation(n_topics = num_topics, max_iter=10, learning_method='online', batch_size = 512, random_state=0, n_jobs=-1)

    tic = time()
    lda_vb.fit(A_tfidf_sp)  #online VB
    toc = time()
    print "elapsed time: %.4f sec" %(toc - tic)
    print "LDA params"
    print lda_vb.get_params()

    print "number of EM iter: %d" % lda_vb.n_batch_iter_
    print "number of dataset sweeps: %d" % lda_vb.n_iter_

    #topic matrix W: K x V
    #components[i,j]: topic i, word j
    topics = lda_vb.components_
        
    f = plt.figure()
    plt.matshow(topics, cmap = 'gray')   
    plt.gca().set_aspect('auto')
    plt.title('learned topic matrix')
    plt.ylabel('topics')
    plt.xlabel('dictionary')
    plt.show()
开发者ID:vsmolyakov,项目名称:ml,代码行数:33,代码来源:lda_vb.py


注:本文中的sklearn.decomposition.LatentDirichletAllocation.get_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。