当前位置: 首页>>代码示例>>Python>>正文


Python IncrementalPCA.fit_transform方法代码示例

本文整理汇总了Python中sklearn.decomposition.IncrementalPCA.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python IncrementalPCA.fit_transform方法的具体用法?Python IncrementalPCA.fit_transform怎么用?Python IncrementalPCA.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.IncrementalPCA的用法示例。


在下文中一共展示了IncrementalPCA.fit_transform方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ipca

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def ipca():
	train_features, test_features = gf.get_tfidf()
	vectorizer = gf.get_tfidf()
	n_components = 250
	ipca = IncrementalPCA(n_components=n_components, batch_size=1250)
	start_time = time.time()
	print 'start ipca on train'
	X_ipca = ipca.fit_transform(train_features)
	runtime = time.time() - start_time
	print '-----'
	print '%.2f seconds to ipca on train' % runtime
	print '-----'
	train_features = None
	
	print 'ipca train done'
	np.savetxt('train_features.csv', X_ipca, fmt='%.8e', delimiter=",")
	X_ipca = None
	print 'ipca train file done'
	test_features = gf.get_tfidf(vectorizer, False)
	Y_ipca = ipca.fit_transform(test_features)
	test_features, vectorizer = None, None
	print 'ipca test done'
	np.savetxt('test_features.csv', Y_ipca, fmt='%.8e', delimiter=",")
	svd_test_features = None
	print 'ipca test file done'
开发者ID:SaarthakKhanna2104,项目名称:Home-Depot-Product-Search-Relevance,代码行数:27,代码来源:IPCA.py

示例2: reduceDataset

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
 def reduceDataset(self,nr=3,method='PCA'):
     '''It reduces the dimensionality of a given dataset using different techniques provided by Sklearn library
      Methods available:
                         'PCA'
                         'FactorAnalysis'
                         'KPCArbf','KPCApoly'
                         'KPCAcosine','KPCAsigmoid'
                         'IPCA'
                         'FastICADeflation'
                         'FastICAParallel'
                         'Isomap'
                         'LLE'
                         'LLEmodified'
                         'LLEltsa'
     '''
     dataset=self.ModelInputs['Dataset']
     #dataset=self.dataset[Model.in_columns]
     #dataset=self.dataset[['Humidity','TemperatureF','Sea Level PressureIn','PrecipitationIn','Dew PointF','Value']]
     #PCA
     if method=='PCA':
         sklearn_pca = sklearnPCA(n_components=nr)
         reduced = sklearn_pca.fit_transform(dataset)
     #Factor Analysis
     elif method=='FactorAnalysis':
         fa=FactorAnalysis(n_components=nr)
         reduced=fa.fit_transform(dataset)
     #kernel pca with rbf kernel
     elif method=='KPCArbf':
         kpca=KernelPCA(nr,kernel='rbf')
         reduced=kpca.fit_transform(dataset)
     #kernel pca with poly kernel
     elif method=='KPCApoly':
         kpca=KernelPCA(nr,kernel='poly')
         reduced=kpca.fit_transform(dataset)
     #kernel pca with cosine kernel
     elif method=='KPCAcosine':
         kpca=KernelPCA(nr,kernel='cosine')
         reduced=kpca.fit_transform(dataset)
     #kernel pca with sigmoid kernel
     elif method=='KPCAsigmoid':
         kpca=KernelPCA(nr,kernel='sigmoid')
         reduced=kpca.fit_transform(dataset)
     #ICA
     elif method=='IPCA':
         ipca=IncrementalPCA(nr)
         reduced=ipca.fit_transform(dataset)
     #Fast ICA
     elif method=='FastICAParallel':
         fip=FastICA(nr,algorithm='parallel')
         reduced=fip.fit_transform(dataset)
     elif method=='FastICADeflation':
         fid=FastICA(nr,algorithm='deflation')
         reduced=fid.fit_transform(dataset)
     elif method == 'All':
         self.dimensionalityReduction(nr=nr)
         return self
     
     self.ModelInputs.update({method:reduced})
     self.datasetsAvailable.append(method)
     return self
开发者ID:UIUC-SULLIVAN,项目名称:ThesisProject_Andrea_Mattera,代码行数:62,代码来源:Classes.py

示例3: get_pca_array

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def get_pca_array(list_chunks, topology):
    """
    Takes a list of mdtraj.Trajectory objects and featurize them to backbone -
    Alpha Carbons pairwise distances. Perform 2 component Incremental
    PCA on the featurized trajectory.

    Parameters
    ----------
    list_chunks: list of mdTraj.Trajectory objects
    topology: str
            Name of the Topology file

    Returns
    -------
    Y: np.array shape(frames, features)

    """
    pca = IncrementalPCA(n_components=2)
    top = md.load_prmtop(topology)
    ca_backbone = top.select("name CA")
    pairs = top.select_pairs(ca_backbone, ca_backbone)
    pair_distances = []
    for chunk in list_chunks:
        X = md.compute_distances(chunk, pairs)
        pair_distances.append(X)
    distance_array = np.concatenate(pair_distances)
    print("No. of data points: %d" % distance_array.shape[0])
    print("No. of features (pairwise distances): %d" % distance_array.shape[1])
    Y = pca.fit_transform(distance_array)
    return Y
开发者ID:jeiros,项目名称:Scripts,代码行数:32,代码来源:pca_analysis.py

示例4: dimensionalityReduction

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
 def dimensionalityReduction(self,nr=5):
     '''It applies all the dimensionality reduction techniques available in this class:
     Techniques available:
                         'PCA'
                         'FactorAnalysis'
                         'KPCArbf','KPCApoly'
                         'KPCAcosine','KPCAsigmoid'
                         'IPCA'
                         'FastICADeflation'
                         'FastICAParallel'
                         'Isomap'
                         'LLE'
                         'LLEmodified'
                         'LLEltsa'
     '''
     dataset=self.ModelInputs['Dataset']
     sklearn_pca = sklearnPCA(n_components=nr)
     p_components = sklearn_pca.fit_transform(dataset)
     fa=FactorAnalysis(n_components=nr)
     factors=fa.fit_transform(dataset)
     kpca=KernelPCA(nr,kernel='rbf')
     rbf=kpca.fit_transform(dataset)
     kpca=KernelPCA(nr,kernel='poly')
     poly=kpca.fit_transform(dataset)
     kpca=KernelPCA(nr,kernel='cosine')
     cosine=kpca.fit_transform(dataset)
     kpca=KernelPCA(nr,kernel='sigmoid')
     sigmoid=kpca.fit_transform(dataset)
     ipca=IncrementalPCA(nr)
     i_components=ipca.fit_transform(dataset)
     fip=FastICA(nr,algorithm='parallel')
     fid=FastICA(nr,algorithm='deflation')
     ficaD=fip.fit_transform(dataset)
     ficaP=fid.fit_transform(dataset)
     '''isomap=Isomap(n_components=nr).fit_transform(dataset)
     try:
         lle1=LocallyLinearEmbedding(n_components=nr).fit_transform(dataset)
     except ValueError:
         lle1=LocallyLinearEmbedding(n_components=nr,eigen_solver='dense').fit_transform(dataset)
     try:
         
         lle2=LocallyLinearEmbedding(n_components=nr,method='modified').fit_transform(dataset)
     except ValueError:
         lle2=LocallyLinearEmbedding(n_components=nr,method='modified',eigen_solver='dense').fit_transform(dataset) 
     try:
         lle3=LocallyLinearEmbedding(n_components=nr,method='ltsa').fit_transform(dataset)
     except ValueError:
         lle3=LocallyLinearEmbedding(n_components=nr,method='ltsa',eigen_solver='dense').fit_transform(dataset)'''
     values=[p_components,factors,rbf,poly,cosine,sigmoid,i_components,ficaD,ficaP]#,isomap,lle1,lle2,lle3]
     keys=['PCA','FactorAnalysis','KPCArbf','KPCApoly','KPCAcosine','KPCAsigmoid','IPCA','FastICADeflation','FastICAParallel']#,'Isomap','LLE','LLEmodified','LLEltsa']
     self.ModelInputs.update(dict(zip(keys, values)))
     [self.datasetsAvailable.append(key) for key in keys ]
     
     #debug
     #dataset=pd.DataFrame(self.ModelInputs['Dataset'])
     #dataset['Output']=self.ModelOutput
     #self.debug['Dimensionalityreduction']=dataset
     ###
     return self
开发者ID:UIUC-SULLIVAN,项目名称:ThesisProject_Andrea_Mattera,代码行数:61,代码来源:Classes.py

示例5: reduce_data

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def reduce_data(features, out_dir, dim=10, first_column=True):
    array = np.load(features)
    subarray = array
    if not first_column:
        subarray = array[:, 1:]

    ipca = IncrementalPCA(n_components=dim, copy=False, batch_size=500000)
    ipca.fit_transform(subarray)
    new_array = subarray
    # when it cannot fit into memory do it incrementally like below
    # new_array_1 = tsvd.fit_transform(subarray[:1500000, :])
    # new_array_2 = tsvd.fit_transform(subarray[1500000:3400000, :])
    # new_array_3 = tsvd.fit_transform(subarray[3400000:, :])
    # new_array = np.vstack([new_array_1, new_array_2, new_array_3])
    if not first_column:
        new_array = np.c_[array[:, 0], new_array]

    assert new_array.shape[0] == array.shape[0]
    np.save(os.path.join(out_dir, os.path.basename(features) + "_pca"), new_array)
开发者ID:Patechoc,项目名称:labs-untested,代码行数:21,代码来源:data.py

示例6: ipca

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def ipca(data, labels, new_dimension):
    print "start incremental pca..."

    if hasattr(data, "todense"):
        data = np.array(data.todense())

    start = time.time()
    pca = IncrementalPCA(n_components=new_dimension)
    reduced = pca.fit_transform(data)
    end = time.time()
    return (reduced, end-start)
开发者ID:sebastian-alfers,项目名称:master-thesis,代码行数:13,代码来源:dimensionality_reduction.py

示例7: run_pca

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def run_pca(n_components,n_sites,order_dict,sim_mat):
   
   	output_file = open('pca_100000_100','w')
   	
        ipca = IncrementalPCA(n_components=n_components,batch_size=8000)
	sim_mat_ipca = ipca.fit_transform(sim_mat)
	var_sim_ipca = ipca.explained_variance_ratio_
	
	output_file.write(",".join(str(x) for x in var_sim_ipca)+'\n')

	for siteid in order_dict:
		stringa = ' '.join(
			[siteid,
        	str(sim_mat_ipca[order_dict[siteid], 0]),
        	str(sim_mat_ipca[order_dict[siteid], 1]),
         	str(sim_mat_ipca[order_dict[siteid], 2]),
         	str(sim_mat_ipca[order_dict[siteid], 3]),
         	str(sim_mat_ipca[order_dict[siteid], 4]),
         	str(sim_mat_ipca[order_dict[siteid], 5]),
         	str(sim_mat_ipca[order_dict[siteid], 6])
        	])
		output_file.write(stringa +'\n')
    	
	n_bins = 1000.
	binned = np.empty((n_sites,5)).astype(np.int32)
	for k in range(5):
		delta = (sim_mat_ipca[:, k].max()-sim_mat_ipca[:, k].min())/n_bins
		min_k = sim_mat_ipca[:, k].min()
		for i in range(n_sites):
			binned[i,k] = int((sim_mat_ipca[i, k]-min_k)/delta)
        	
	f = open('pc_100000_100.csv','w')
	for siteid in order_dict:
		stringa = ' '.join(
			[siteid,
        	str(binned[order_dict[siteid], 0]),
        	str(binned[order_dict[siteid], 1]),
         	str(binned[order_dict[siteid], 2]),
         	str(binned[order_dict[siteid], 3]),
         	str(binned[order_dict[siteid], 4])    
        	])
    	f.write(stringa +'\n')
	f.close()
开发者ID:SherazT,项目名称:Radiumone_code,代码行数:45,代码来源:compute_serial_pca.py

示例8: test_incremental_pca

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def test_incremental_pca():
    """Incremental PCA on dense arrays."""
    X = iris.data
    batch_size = X.shape[0] // 3
    ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
    pca = PCA(n_components=2)
    pca.fit_transform(X)

    X_transformed = ipca.fit_transform(X)

    np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2))
    assert_almost_equal(ipca.explained_variance_ratio_.sum(),
                        pca.explained_variance_ratio_.sum(), 1)

    for n_components in [1, 2, X.shape[1]]:
        ipca = IncrementalPCA(n_components, batch_size=batch_size)
        ipca.fit(X)
        cov = ipca.get_covariance()
        precision = ipca.get_precision()
        assert_array_almost_equal(np.dot(cov, precision),
                                  np.eye(X.shape[1]))
开发者ID:0x0all,项目名称:scikit-learn,代码行数:23,代码来源:test_incremental_pca.py

示例9: PCASK

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
class PCASK(AbstractFeature):
    def __init__(self, n_components):
        AbstractFeature.__init__(self)
        self.n_components = n_components
        #for key in options:
            #setattr(self,key,options[key])

    def compute(self,X,y):
        if X.ndim == 3:
            X = X.reshape((X.shape[0],X.shape[1]*X.shape[2]))
        self.ipca = IncrementalPCA(n_components=self.n_components, batch_size=None)
        return self.ipca.fit_transform(X)


    def extract(self,X):
        if X.ndim == 2:
            X = X.reshape((X.shape[0]*X.shape[1]))
        return list(self.ipca.transform([X])[0])

    def __repr__(self):
        return "PCASK"
开发者ID:EthnoRec,项目名称:er-data-analysis,代码行数:23,代码来源:feature.py

示例10: load_iris

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
# Authors: Kyle Kastner
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA, IncrementalPCA

iris = load_iris()
X = iris.data
y = iris.target

n_components = 2
ipca = IncrementalPCA(n_components=n_components, batch_size=10)
X_ipca = ipca.fit_transform(X)

pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X)

colors = ['navy', 'turquoise', 'darkorange']

for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]:
    plt.figure(figsize=(8, 8))
    for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names):
        plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1],
                    color=color, lw=2, label=target_name)

    if "Incremental" in title:
        err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean()
        plt.title(title + " of iris dataset\nMean absolute unsigned error "
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:33,代码来源:plot_incremental_pca.py

示例11: main

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
def main(date, takeSubset=False):
    """
    Reduces the dimensionality of the training data to 3 dimensions, 
    plots the transformed data in 3d space. The idea is to bring
    out separability between the resistance classes which may be 
    hidden in the dimensionality of the data.

    :param date: (string) Data collection date YYYY_MMDD
    :param takeSubset: (boolean) Transform and plot a random subset of
                                 the trainng data?

    :return: (None)
    """

    mkl.set_num_threads(8)

    # Load the training and testing data into memory
    trainX, trainY = FileIO.loadTrainingData(date)

    if takeSubset:
        indices = np.random.choice(range(0, len(trainY)), size=NUM_SAMPLES, replace=False)
        X = trainX[indices,:]
        y = trainY[indices]
    else:
        X = trainX
        y = trainY

    X = np.nan_to_num(X)

    # Break the data into resistance classes
    susIndex = Constants.LABEL_TO_INDEX[Constants.SUSCEPTIBLE]
    drIndex = Constants.LABEL_TO_INDEX[Constants.DR_RESISTANT]
    grIndex = Constants.LABEL_TO_INDEX[Constants.GR_RESISTANT]

    susX = X[y==susIndex, :]
    drX = X[y==drIndex, :]
    grX = X[y==grIndex, :]

    # Transform the data using PCA
    pca = IncrementalPCA(n_components=6)

    pointsSUS = pca.fit_transform(susX)
    pointsGR= pca.fit_transform(grX)
    pointsDR = pca.fit_transform(drX)

    # Plot the transformed data in 3D space
    traceSUS = go.Scatter3d(
        x=pointsSUS[:, 0],
        y=pointsSUS[:, 1],
        z=pointsSUS[:, 2],
        mode='markers',
        marker=dict(
            size=5,
            line=dict(
                color='rgba(255, 0, 0, 0)',
                width=0.1
            ),
            opacity=0
        )
    )

    traceDR = go.Scatter3d(
        x=pointsDR[:, 0],
        y=pointsDR[:, 1],
        z=pointsDR[:, 2],
        mode='markers',
        marker=dict(
            size=5,
            line=dict(
                color='rgba(0, 255, 0, 0)',
                width=0.1
            ),
            opacity=0
        )
    )

    traceGR = go.Scatter3d(
        x=pointsGR[:, 0],
        y=pointsGR[:, 1],
        z=pointsGR[:, 2],
        mode='markers',
        marker=dict(
            size=5,
            line=dict(
                color='rgba(0, 0, 255, 0)',
                width=0.1
            ),
            opacity=0
        )
    )

    data = [traceSUS, traceDR, traceGR]
    fig = go.Figure(data=data)
    py.iplot(fig, filename='3D PCA Wavelength Plot')

    # Plot the principle components
    eigenSpectra = pca.components_

    plt.subplot(3,1,1)
    plt.plot(Constants.WAVELENGTHS, eigenSpectra[0, :])
#.........这里部分代码省略.........
开发者ID:adonelick,项目名称:HyperspectralWeeds,代码行数:103,代码来源:hyperspectralPCA.py

示例12: print

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
# Time = 
 
 
 
 
# Data decomposition 
print("Now Decompositing Data") 
start_time = time.clock() 
 
 
#from sklearn.decomposition import TruncatedSVD 
 

#decomp = TruncatedSVD(n_components=1000,n_iter=5) 
#decomp.fit(train_data)  
train_data = pca.fit_transform(train_data)
 
 
end_time = time.clock() 
print("Decompositing Complete \nTime =", end_time - start_time) 
# Time = 
print(train_data) 
 
 
 

# Saving decomposed data as csv 
csv_decomp_train_path = 'csv_pca900decomp_alphabets_train.csv' 
 
 
with open( csv_decomp_train_path, 'w') as f: 
开发者ID:KentaroTakemoto,项目名称:Char74K-Learning,代码行数:33,代码来源:PCA.py

示例13: fit_pca

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
 def fit_pca(self, matrix):
     """Fit pca matrix and save sklearn model """
     reducer = IncrementalPCA(n_components=800, batch_size=2500)
     reduced_matrix = reducer.fit_transform(matrix)
     self.rev_matrix_pca = reduced_matrix
     self.pca_model = reducer
开发者ID:gabll,项目名称:Metis-Kojak,代码行数:8,代码来源:RecommendData.py

示例14: enumerate

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import fit_transform [as 别名]
import numpy as np

from gensim.models import Word2Vec
from sklearn.decomposition import IncrementalPCA
# from bhtsne import tsne

WORD2VEC_MODEL = 'GNews.model'
WORD2VEC_JSON = 'word2vec.json'

model = Word2Vec.load(WORD2VEC_MODEL)

words = []
vectors = np.empty((len(model.vocab.keys()), 300))
# vectors = np.empty((6, 300))

# for i, w in enumerate(['email', 'password', 'user', 'date', 'this', 'is']):
for i, w in enumerate(model.vocab.keys()):
    words.append(w)
    vectors[i] = model[w]

# vectors = tsne(vectors, dimensions=3, perplexity=50)
ipca = IncrementalPCA(n_components=2, batch_size=25000)
vectors = ipca.fit_transform(vectors)

json_vectors = {}
for i, w in enumerate(words):
    json_vectors[w] = vectors[i].tolist()

with open(WORD2VEC_JSON, 'w') as f:
    json.dump(json_vectors, f)
开发者ID:replive,项目名称:nightfury,代码行数:32,代码来源:d_reduction.py


注:本文中的sklearn.decomposition.IncrementalPCA.fit_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。