当前位置: 首页>>代码示例>>Python>>正文


Python IncrementalPCA.R方法代码示例

本文整理汇总了Python中sklearn.decomposition.IncrementalPCA.R方法的典型用法代码示例。如果您正苦于以下问题:Python IncrementalPCA.R方法的具体用法?Python IncrementalPCA.R怎么用?Python IncrementalPCA.R使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.IncrementalPCA的用法示例。


在下文中一共展示了IncrementalPCA.R方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: decomposition

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import R [as 别名]
    def decomposition(self,
                      output_dimension,
                      normalize_poissonian_noise=False,
                      algorithm='PCA',
                      signal_mask=None,
                      navigation_mask=None,
                      get=threaded.get,
                      num_chunks=None,
                      reproject=True,
                      bounds=True,
                      **kwargs):
        """Perform Incremental (Batch) decomposition on the data, keeping n
        significant components.

        Parameters
        ----------
        output_dimension : int
            the number of significant components to keep
        normalize_poissonian_noise : bool
            If True, scale the SI to normalize Poissonian noise
        algorithm : str
            One of ('PCA', 'ORPCA', 'ONMF'). By default ('PCA') IncrementalPCA
            from scikit-learn is run.
        get : dask scheduler
            the dask scheduler to use for computations;
            default `dask.threaded.get`
        num_chunks : int
            the number of dask chunks to pass to the decomposition model.
            More chunks require more memory, but should run faster. Will be
            increased to contain atleast output_dimension signals.
        navigation_mask : {BaseSignal, numpy array, dask array}
            The navigation locations marked as True are not used in the
            decompostion.
        signal_mask : {BaseSignal, numpy array, dask array}
            The signal locations marked as True are not used in the
            decomposition.
        reproject : bool
            Reproject data on the learnt components (factors) after learning.
        bounds : {tuple, bool}
            The (min, max) values of the data to normalize before learning.
            If tuple (min, max), those values will be used for normalization.
            If True, extremes will be looked up (expensive), default.
            If False, no normalization is done (learning may be very slow).
            If normalize_poissonian_noise is True, this cannot be True.
        **kwargs
            passed to the partial_fit/fit functions.

        Notes
        -----
        Various algorithm parameters and their default values:
            ONMF:
                lambda1=1,
                kappa=1,
                robust=False,
                store_r=False
                batch_size=None
            ORPCA:
                fast=True,
                lambda1=None,
                lambda2=None,
                method=None,
                learning_rate=None,
                init=None,
                training_samples=None,
                momentum=None
            PCA:
                batch_size=None,
                copy=True,
                white=False


        """
        explained_variance = None
        explained_variance_ratio = None
        _al_data = self._data_aligned_with_axes
        nav_chunks = _al_data.chunks[:self.axes_manager.navigation_dimension]
        sig_chunks = _al_data.chunks[self.axes_manager.navigation_dimension:]

        num_chunks = 1 if num_chunks is None else num_chunks
        blocksize = np.min([multiply(ar) for ar in product(*nav_chunks)])
        nblocks = multiply([len(c) for c in nav_chunks])
        if blocksize / output_dimension < num_chunks:
            num_chunks = np.ceil(blocksize / output_dimension)
        blocksize *= num_chunks

        ## LEARN
        if algorithm == 'PCA':
            from sklearn.decomposition import IncrementalPCA
            obj = IncrementalPCA(n_components=output_dimension)
            method = partial(obj.partial_fit, **kwargs)
            reproject = True

        elif algorithm == 'ORPCA':
            from hyperspy.learn.rpca import ORPCA
            kwg = {'fast': True}
            kwg.update(kwargs)
            obj = ORPCA(output_dimension, **kwg)
            method = partial(obj.fit, iterating=True)

        elif algorithm == 'ONMF':
#.........这里部分代码省略.........
开发者ID:mwalls,项目名称:hyperspy,代码行数:103,代码来源:lazy.py

示例2: decomposition

# 需要导入模块: from sklearn.decomposition import IncrementalPCA [as 别名]
# 或者: from sklearn.decomposition.IncrementalPCA import R [as 别名]
    def decomposition(self,
                      normalize_poissonian_noise=False,
                      algorithm='svd',
                      output_dimension=None,
                      signal_mask=None,
                      navigation_mask=None,
                      get=threaded.get,
                      num_chunks=None,
                      reproject=True,
                      bounds=False,
                      **kwargs):
        """Perform Incremental (Batch) decomposition on the data, keeping n
        significant components.

        Parameters
        ----------
        normalize_poissonian_noise : bool
            If True, scale the SI to normalize Poissonian noise
        algorithm : str
            One of ('svd', 'PCA', 'ORPCA', 'ONMF'). By default 'svd',
            lazy SVD decomposition from dask.
        output_dimension : int
            the number of significant components to keep. If None, keep all
            (only valid for SVD)
        get : dask scheduler
            the dask scheduler to use for computations;
            default `dask.threaded.get`
        num_chunks : int
            the number of dask chunks to pass to the decomposition model.
            More chunks require more memory, but should run faster. Will be
            increased to contain atleast output_dimension signals.
        navigation_mask : {BaseSignal, numpy array, dask array}
            The navigation locations marked as True are not used in the
            decompostion.
        signal_mask : {BaseSignal, numpy array, dask array}
            The signal locations marked as True are not used in the
            decomposition.
        reproject : bool
            Reproject data on the learnt components (factors) after learning.
        **kwargs
            passed to the partial_fit/fit functions.

        Notes
        -----
        Various algorithm parameters and their default values:
            ONMF:
                lambda1=1,
                kappa=1,
                robust=False,
                store_r=False
                batch_size=None
            ORPCA:
                fast=True,
                lambda1=None,
                lambda2=None,
                method=None,
                learning_rate=None,
                init=None,
                training_samples=None,
                momentum=None
            PCA:
                batch_size=None,
                copy=True,
                white=False


        """
        if bounds:
            msg = (
                "The `bounds` keyword is deprecated and will be removed "
                "in v2.0. Since version > 1.3 this has no effect.")
            warnings.warn(msg, VisibleDeprecationWarning)
        explained_variance = None
        explained_variance_ratio = None
        _al_data = self._data_aligned_with_axes
        nav_chunks = _al_data.chunks[:self.axes_manager.navigation_dimension]
        sig_chunks = _al_data.chunks[self.axes_manager.navigation_dimension:]

        num_chunks = 1 if num_chunks is None else num_chunks
        blocksize = np.min([multiply(ar) for ar in product(*nav_chunks)])
        nblocks = multiply([len(c) for c in nav_chunks])
        if algorithm != "svd" and output_dimension is None:
            raise ValueError("With the %s the output_dimension "
                             "must be specified" % algorithm)
        if output_dimension and blocksize / output_dimension < num_chunks:
            num_chunks = np.ceil(blocksize / output_dimension)
        blocksize *= num_chunks
        # LEARN
        if algorithm == 'PCA':
            from sklearn.decomposition import IncrementalPCA
            obj = IncrementalPCA(n_components=output_dimension)
            method = partial(obj.partial_fit, **kwargs)
            reproject = True

        elif algorithm == 'ORPCA':
            from hyperspy.learn.rpca import ORPCA
            kwg = {'fast': True}
            kwg.update(kwargs)
            obj = ORPCA(output_dimension, **kwg)
            method = partial(obj.fit, iterating=True)
#.........这里部分代码省略.........
开发者ID:woozey,项目名称:hyperspy,代码行数:103,代码来源:lazy.py


注:本文中的sklearn.decomposition.IncrementalPCA.R方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。