当前位置: 首页>>代码示例>>Python>>正文


Python Alignment.read方法代码示例

本文整理汇总了Python中skbio.Alignment.read方法的典型用法代码示例。如果您正苦于以下问题:Python Alignment.read方法的具体用法?Python Alignment.read怎么用?Python Alignment.read使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在skbio.Alignment的用法示例。


在下文中一共展示了Alignment.read方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: align_two_alignments

# 需要导入模块: from skbio import Alignment [as 别名]
# 或者: from skbio.Alignment import read [as 别名]
def align_two_alignments(aln1_fp, aln2_fp, moltype, params=None):
    """Returns an Alignment object from two existing Alignments.

    Parameters
    ----------
    aln1_fp : string
        file path of 1st alignment
    aln2_fp : string
        file path of 2nd alignment
    params : dict of parameters to pass in to the Mafft app controller.

    Returns
    -------
        The aligned sequences.
    """

    # Create Mafft app.
    app = Mafft(InputHandler='_input_as_paths',
                params=params,
                SuppressStderr=False)
    app._command = 'mafft-profile'

    # Get results using int_map as input to app
    res = app([aln1_fp, aln2_fp])

    return Alignment.read(res['StdOut'], constructor=moltype)
开发者ID:mortonjt,项目名称:burrito-fillings,代码行数:28,代码来源:mafft_v7.py

示例2: align_unaligned_seqs

# 需要导入模块: from skbio import Alignment [as 别名]
# 或者: from skbio.Alignment import read [as 别名]
def align_unaligned_seqs(seqs_fp, moltype=DNA, params=None, accurate=False):
    """Aligns unaligned sequences

    Parameters
    ----------
    seqs_fp : string
        file path of the input fasta file
    moltype : {skbio.DNA, skbio.RNA, skbio.Protein}
    params : dict-like type
        It pass the additional parameter settings to the application.
        Default is None.
    accurate : boolean
        Perform accurate alignment or not. It will sacrifice performance
        if set to True. Default is False.

    Returns
    -------
    Alignment object
        The aligned sequences.

    See Also
    --------
    skbio.Alignment
    skbio.DNA
    skbio.RNA
    skbio.Protein
    """
    # Create Mafft app.
    app = Mafft(InputHandler='_input_as_path', params=params)

    # Turn on correct sequence type
    app.Parameters[MOLTYPE_MAP[moltype]].on()

    # Do not report progress
    app.Parameters['--quiet'].on()

    # More accurate alignment, sacrificing performance.
    if accurate:
        app.Parameters['--globalpair'].on()
        app.Parameters['--maxiterate'].Value = 1000

    # Get results using int_map as input to app
    res = app(seqs_fp)

    # Get alignment as dict out of results
    alignment = Alignment.read(res['StdOut'], constructor=moltype)

    # Clean up
    res.cleanUp()

    return alignment
开发者ID:mortonjt,项目名称:burrito-fillings,代码行数:53,代码来源:mafft_v7.py

示例3: reformat_treepuzzle

# 需要导入模块: from skbio import Alignment [as 别名]
# 或者: from skbio.Alignment import read [as 别名]
def reformat_treepuzzle(gene_tree,
                        species_tree,
                        gene_msa_fa_fp,
                        output_tree_fp,
                        output_msa_phy_fp):
    """ Reformat input trees to the format accepted by Tree-Puzzle

    Parameters
    ----------
    gene_tree: skbio.TreeNode
        TreeNode instance for gene tree
    species_tree_fp: skbio.TreeNode
        TreeNode instance for species tree
    gene_msa_fa_fp: string
        file path to gene alignments in FASTA format
    output_tree_fp: string
        file path to output trees (Nexus format)
    output_msa_phy_fp: string
        file path to output MSA in PHYLIP format

    See Also
    --------
    skbio.TreeNode
    """
    # remove the root branch length (output with ALF)
    for node in gene_tree.postorder():
        if node.is_root():
            node.length = None
    for node in species_tree.postorder():
        if node.is_root():
            node.length = None
    # trim gene tree leaves to exclude '_GENENAME' (if exists)
    trim_gene_tree_leaves(gene_tree)
    join_trees(gene_tree,
        species_tree,
        output_tree_fp)
    # trim FASTA sequence labels to exclude '/GENENAME' (if exists)
    msa_fa = Alignment.read(gene_msa_fa_fp, format='fasta')
    msa_fa_update_ids, new_to_old_ids = msa_fa.update_ids(func=id_mapper)
    msa_fa_update_ids.write(output_msa_phy_fp, format='phylip')
开发者ID:ekopylova,项目名称:hgt_analysis,代码行数:42,代码来源:reformat_input.py

示例4: parse_deblur_output

# 需要导入模块: from skbio import Alignment [as 别名]
# 或者: from skbio.Alignment import read [as 别名]
def parse_deblur_output(seqs_fp, derep_clusters):
    """ Parse deblur output file into an OTU map.

    Parameters
    ----------
    seqs_fp: string
        file path to deblurred sequences
    derep_clusters: dictionary
        dictionary of dereplicated sequences map

    Returns
    -------
    clusters: dictionary
        dictionary of clusters including dereplicated sequence labels

    Notes
    -----
    For each deblurred sequence in seqs_fp, use the sequence label to
    obtain all dereplicated sequence labels belonging to it
    (from derep_clusters) to create entries in a new dictionary where the keys
    are actual sequences (not the labels). Note not all sequences
    in derep_clusters will be in seqs_fp since they could have been removed in
    the artifact filtering step.
    """
    clusters = {}
    # Replace representative sequence name with actual sequence in cluster
    msa_fa = Alignment.read(seqs_fp, format='fasta')
    for label, seq in Alignment.iteritems(msa_fa):
        cluster_id = label.split(';')[0]
        seq2 = str(seq.degap())
        if seq2 not in clusters:
            clusters[seq2] = []
        if cluster_id not in derep_clusters:
            raise ValueError(
                'Seed ID %s does not exist in .uc file' % cluster_id)
        else:
            clusters[seq2].extend(derep_clusters[cluster_id])
    return clusters
开发者ID:pombredanne,项目名称:deblur,代码行数:40,代码来源:workflow.py


注:本文中的skbio.Alignment.read方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。