本文整理汇总了Python中shogun.Kernel.GaussianKernel.set_cache_size方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianKernel.set_cache_size方法的具体用法?Python GaussianKernel.set_cache_size怎么用?Python GaussianKernel.set_cache_size使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Kernel.GaussianKernel
的用法示例。
在下文中一共展示了GaussianKernel.set_cache_size方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_kernel
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import set_cache_size [as 别名]
def create_kernel(kname,kparam,feats_train):
"""Call the corresponding constructor for the kernel"""
if kname == 'gauss':
kernel = GaussianKernel(feats_train, feats_train, kparam['width'])
elif kname == 'linear':
kernel = LinearKernel(feats_train, feats_train)
kernel.set_normalizer(AvgDiagKernelNormalizer(kparam['scale']))
elif kname == 'poly':
kernel = PolyKernel(feats_train, feats_train, kparam['degree'], kparam['inhomogene'], kparam['normal'])
elif kname == 'wd':
kernel=WeightedDegreePositionStringKernel(feats_train, feats_train, kparam['degree'])
kernel.set_normalizer(AvgDiagKernelNormalizer(float(kparam['seqlength'])))
kernel.set_shifts(kparam['shift']*numpy.ones(kparam['seqlength'],dtype=numpy.int32))
#kernel=WeightedDegreeStringKernel(feats_train, feats_train, kparam['degree'])
elif kname == 'spec':
kernel = CommUlongStringKernel(feats_train, feats_train)
elif kname == 'cumspec':
kernel = WeightedCommWordStringKernel(feats_train, feats_train)
kernel.set_weights(numpy.ones(kparam['degree']))
elif kname == 'spec2':
kernel = CombinedKernel()
k0 = CommWordStringKernel(feats_train['f0'], feats_train['f0'])
k0.io.disable_progress()
kernel.append_kernel(k0)
k1 = CommWordStringKernel(feats_train['f1'], feats_train['f1'])
k1.io.disable_progress()
kernel.append_kernel(k1)
elif kname == 'cumspec2':
kernel = CombinedKernel()
k0 = WeightedCommWordStringKernel(feats_train['f0'], feats_train['f0'])
k0.set_weights(numpy.ones(kparam['degree']))
k0.io.disable_progress()
kernel.append_kernel(k0)
k1 = WeightedCommWordStringKernel(feats_train['f1'], feats_train['f1'])
k1.set_weights(numpy.ones(kparam['degree']))
k1.io.disable_progress()
kernel.append_kernel(k1)
elif kname == 'localalign':
kernel = LocalAlignmentStringKernel(feats_train, feats_train)
elif kname == 'localimprove':
kernel = LocalityImprovedStringKernel(feats_train, feats_train, kparam['length'],\
kparam['indeg'], kparam['outdeg'])
else:
print 'Unknown kernel %s' % kname
kernel.set_cache_size(32)
return kernel