本文整理汇总了Python中shogun.Kernel.GaussianKernel.init方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianKernel.init方法的具体用法?Python GaussianKernel.init怎么用?Python GaussianKernel.init使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Kernel.GaussianKernel
的用法示例。
在下文中一共展示了GaussianKernel.init方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: kernel_io_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def kernel_io_modular (fm_train_real=traindat,fm_test_real=testdat,width=1.9):
from shogun.Features import RealFeatures
from shogun.Kernel import GaussianKernel
from shogun.Library import AsciiFile, BinaryFile
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
kernel=GaussianKernel(feats_train, feats_train, width)
km_train=kernel.get_kernel_matrix()
f=AsciiFile("gaussian_train.ascii","w")
kernel.save(f)
del f
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
f=AsciiFile("gaussian_test.ascii","w")
kernel.save(f)
del f
#clean up
import os
os.unlink("gaussian_test.ascii")
os.unlink("gaussian_train.ascii")
return km_train, km_test, kernel
示例2: classify
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def classify(classifier, features, labels, C=5, kernel_name=None, kernel_args=None):
from shogun.Features import RealFeatures
sigma = 10000
kernel = GaussianKernel(features, features, sigma)
# TODO
# kernel = LinearKernel(features, features)
# kernel = PolyKernel(features, features, 50, 2)
# kernel = kernels[kernel_name](features, features, *kernel_args)
svm = classifier(C, kernel, labels)
svm.train(features)
x_size = 640
y_size = 400
size = 100
x1 = np.linspace(0, x_size, size)
y1 = np.linspace(0, y_size, size)
x, y = np.meshgrid(x1, y1)
test = RealFeatures(np.array((np.ravel(x), np.ravel(y))))
kernel.init(features, test)
out = svm.apply(test).get_values()
if not len(out):
out = svm.apply(test).get_labels()
z = out.reshape((size, size))
z = np.transpose(z)
return x, y, z
示例3: statistics_kmm
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def statistics_kmm (n,d):
from shogun.Features import RealFeatures
from shogun.Features import DataGenerator
from shogun.Kernel import GaussianKernel, MSG_DEBUG
from shogun.Statistics import KernelMeanMatching
from shogun.Mathematics import Math
# init seed for reproducability
Math.init_random(1)
random.seed(1);
data = random.randn(d,n)
# create shogun feature representation
features=RealFeatures(data)
# use a kernel width of sigma=2, which is 8 in SHOGUN's parametrization
# which is k(x,y)=exp(-||x-y||^2 / tau), in constrast to the standard
# k(x,y)=exp(-||x-y||^2 / (2*sigma^2)), so tau=2*sigma^2
kernel=GaussianKernel(10,8)
kernel.init(features,features)
kmm = KernelMeanMatching(kernel,array([0,1,2,3,7,8,9],dtype=int32),array([4,5,6],dtype=int32))
w = kmm.compute_weights()
#print w
return w
示例4: mlprocess
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def mlprocess(task_filename, data_filename, pred_filename, verbose=True):
"""Demo of creating machine learning process."""
task_type, fidx, lidx, train_idx, test_idx = parse_task(task_filename)
outputs = init_output(task_type)
all_data = parse_data(data_filename)
train_ex, train_lab, test_ex, test_lab = split_data(all_data, fidx, lidx, train_idx, test_idx)
label_train = outputs.str2label(train_lab)
if verbose:
print 'Number of features: %d' % train_ex.shape[0]
print '%d training examples, %d test examples' % (len(train_lab), len(test_lab))
feats_train = RealFeatures(train_ex)
feats_test = RealFeatures(test_ex)
width=1.0
kernel=GaussianKernel(feats_train, feats_train, width)
labels=Labels(label_train)
svm = init_svm(task_type, kernel, labels)
svm.train()
kernel.init(feats_train, feats_test)
preds = svm.classify().get_labels()
pred_label = outputs.label2str(preds)
pf = open(pred_filename, 'w')
for pred in pred_label:
pf.write(pred+'\n')
pf.close()
示例5: regression_svrlight_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def regression_svrlight_modular(fm_train=traindat,fm_test=testdat,label_train=label_traindat, \
width=1.2,C=1,epsilon=1e-5,tube_epsilon=1e-2,num_threads=3):
from shogun.Features import Labels, RealFeatures
from shogun.Kernel import GaussianKernel
try:
from shogun.Regression import SVRLight
except ImportError:
print('No support for SVRLight available.')
return
feats_train=RealFeatures(fm_train)
feats_test=RealFeatures(fm_test)
kernel=GaussianKernel(feats_train, feats_train, width)
labels=Labels(label_train)
svr=SVRLight(C, epsilon, kernel, labels)
svr.set_tube_epsilon(tube_epsilon)
svr.parallel.set_num_threads(num_threads)
svr.train()
kernel.init(feats_train, feats_test)
out = svr.apply().get_labels()
return out, kernel
示例6: mkl_binclass_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def mkl_binclass_modular (train_data, testdata, train_labels, test_labels, d1, d2):
# create some Gaussian train/test matrix
tfeats = RealFeatures(train_data)
tkernel = GaussianKernel(128, d1)
tkernel.init(tfeats, tfeats)
K_train = tkernel.get_kernel_matrix()
pfeats = RealFeatures(test_data)
tkernel.init(tfeats, pfeats)
K_test = tkernel.get_kernel_matrix()
# create combined train features
feats_train = CombinedFeatures()
feats_train.append_feature_obj(RealFeatures(train_data))
# and corresponding combined kernel
kernel = CombinedKernel()
kernel.append_kernel(CustomKernel(K_train))
kernel.append_kernel(GaussianKernel(128, d2))
kernel.init(feats_train, feats_train)
# train mkl
labels = Labels(train_labels)
mkl = MKLClassification()
# not to use svmlight
mkl.set_interleaved_optimization_enabled(0)
# which norm to use for MKL
mkl.set_mkl_norm(2)
# set cost (neg, pos)
mkl.set_C(1, 1)
# set kernel and labels
mkl.set_kernel(kernel)
mkl.set_labels(labels)
# train
mkl.train()
# test
# create combined test features
feats_pred = CombinedFeatures()
feats_pred.append_feature_obj(RealFeatures(test_data))
# and corresponding combined kernel
kernel = CombinedKernel()
kernel.append_kernel(CustomKernel(K_test))
kernel.append_kernel(GaussianKernel(128, d2))
kernel.init(feats_train, feats_pred)
# and classify
mkl.set_kernel(kernel)
output = mkl.apply().get_labels()
output = [1.0 if i>0 else -1.0 for i in output]
accu = len(where(output == test_labels)[0]) / float(len(output))
return accu
示例7: kernel_gaussian_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def kernel_gaussian_modular (fm_train_real=traindat,fm_test_real=testdat, width=1.3):
from shogun.Features import RealFeatures
from shogun.Kernel import GaussianKernel
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
kernel=GaussianKernel(feats_train, feats_train, width)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例8: gaussian
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def gaussian ():
print 'Gaussian'
from shogun.Features import RealFeatures
from shogun.Kernel import GaussianKernel
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
width=1.9
kernel=GaussianKernel(feats_train, feats_train, width)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
示例9: classifier_libsvm_minimal_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def classifier_libsvm_minimal_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,width=2.1,C=1):
from shogun.Features import RealFeatures, BinaryLabels
from shogun.Classifier import LibSVM
from shogun.Kernel import GaussianKernel
feats_train=RealFeatures(fm_train_real);
feats_test=RealFeatures(fm_test_real);
kernel=GaussianKernel(feats_train, feats_train, width);
labels=BinaryLabels(label_train_twoclass);
svm=LibSVM(C, kernel, labels);
svm.train();
kernel.init(feats_train, feats_test);
out=svm.apply().get_labels();
testerr=mean(sign(out)!=label_train_twoclass)
示例10: classifier_libsvmoneclass_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def classifier_libsvmoneclass_modular (fm_train_real=traindat,fm_test_real=testdat,width=2.1,C=1,epsilon=1e-5):
from shogun.Features import RealFeatures, Labels
from shogun.Kernel import GaussianKernel
from shogun.Classifier import LibSVMOneClass
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
kernel=GaussianKernel(feats_train, feats_train, width)
svm=LibSVMOneClass(C, kernel)
svm.set_epsilon(epsilon)
svm.train()
kernel.init(feats_train, feats_test)
svm.apply().get_labels()
predictions = svm.apply()
return predictions, svm, predictions.get_labels()
示例11: classifier_multiclassmachine_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
from shogun.Features import RealFeatures, Labels
from shogun.Kernel import GaussianKernel
from shogun.Classifier import LibSVM, KernelMulticlassMachine, ONE_VS_REST_STRATEGY
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
kernel=GaussianKernel(feats_train, feats_train, width)
labels=Labels(label_train_multiclass)
classifier = LibSVM(C, kernel, labels)
classifier.set_epsilon(epsilon)
mc_classifier = KernelMulticlassMachine(ONE_VS_REST_STRATEGY,kernel,classifier,labels)
mc_classifier.train()
kernel.init(feats_train, feats_test)
out = mc_classifier.apply().get_labels()
return out
示例12: regression_kernel_ridge_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def regression_kernel_ridge_modular (fm_train=traindat,fm_test=testdat,label_train=label_traindat,width=0.8,tau=1e-6):
from shogun.Features import Labels, RealFeatures
from shogun.Kernel import GaussianKernel
from shogun.Regression import KernelRidgeRegression
feats_train=RealFeatures(fm_train)
feats_test=RealFeatures(fm_test)
kernel=GaussianKernel(feats_train, feats_train, width)
labels=Labels(label_train)
krr=KernelRidgeRegression(tau, kernel, labels)
krr.train(feats_train)
kernel.init(feats_train, feats_test)
out = krr.apply().get_labels()
return out,kernel,krr
示例13: classifier_multiclasslibsvm_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def classifier_multiclasslibsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
from shogun.Features import RealFeatures, Labels
from shogun.Kernel import GaussianKernel
from shogun.Classifier import MulticlassLibSVM
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
kernel=GaussianKernel(feats_train, feats_train, width)
labels=Labels(label_train_multiclass)
svm=MulticlassLibSVM(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.train()
kernel.init(feats_train, feats_test)
out = svm.apply().get_labels()
predictions = svm.apply()
return predictions, svm, predictions.get_labels()
示例14: classifier_gmnpsvm_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def classifier_gmnpsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5):
from shogun.Features import RealFeatures, MulticlassLabels
from shogun.Kernel import GaussianKernel
from shogun.Classifier import GMNPSVM
feats_train=RealFeatures(fm_train_real)
feats_test=RealFeatures(fm_test_real)
kernel=GaussianKernel(feats_train, feats_train, width)
labels=MulticlassLabels(label_train_multiclass)
svm=GMNPSVM(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.train(feats_train)
kernel.init(feats_train, feats_test)
out=svm.apply(feats_test).get_labels()
return out,kernel
示例15: regression_libsvr_modular
# 需要导入模块: from shogun.Kernel import GaussianKernel [as 别名]
# 或者: from shogun.Kernel.GaussianKernel import init [as 别名]
def regression_libsvr_modular (svm_c=1, svr_param=0.1, n=100,n_test=100, \
x_range=6,x_range_test=10,noise_var=0.5,width=1, seed=1):
from shogun.Features import RegressionLabels, RealFeatures
from shogun.Kernel import GaussianKernel
from shogun.Regression import LibSVR, LIBSVR_NU_SVR, LIBSVR_EPSILON_SVR
# reproducable results
random.seed(seed)
# easy regression data: one dimensional noisy sine wave
n=15
n_test=100
x_range_test=10
noise_var=0.5;
X=random.rand(1,n)*x_range
X_test=array([[float(i)/n_test*x_range_test for i in range(n_test)]])
Y_test=sin(X_test)
Y=sin(X)+random.randn(n)*noise_var
# shogun representation
labels=RegressionLabels(Y[0])
feats_train=RealFeatures(X)
feats_test=RealFeatures(X_test)
kernel=GaussianKernel(feats_train, feats_train, width)
# two svr models: epsilon and nu
svr_epsilon=LibSVR(svm_c, svr_param, kernel, labels, LIBSVR_EPSILON_SVR)
svr_epsilon.train()
svr_nu=LibSVR(svm_c, svr_param, kernel, labels, LIBSVR_NU_SVR)
svr_nu.train()
# predictions
kernel.init(feats_train, feats_test)
out1_epsilon=svr_epsilon.apply().get_labels()
out2_epsilon=svr_epsilon.apply(feats_test).get_labels()
out1_nu=svr_epsilon.apply().get_labels()
out2_nu=svr_epsilon.apply(feats_test).get_labels()
return out1_epsilon,out2_epsilon,out1_nu,out2_nu ,kernel