本文整理汇总了Python中sensor_msgs.msg.CameraInfo.binning_y方法的典型用法代码示例。如果您正苦于以下问题:Python CameraInfo.binning_y方法的具体用法?Python CameraInfo.binning_y怎么用?Python CameraInfo.binning_y使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sensor_msgs.msg.CameraInfo
的用法示例。
在下文中一共展示了CameraInfo.binning_y方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GetCameraInfo
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def GetCameraInfo(width, height):
cam_info = CameraInfo()
cam_info.width = width
cam_info.height = height
cam_info.distortion_model = model
#cam_info.D = [0.0]*5
#cam_info.K = [0.0]*9
#cam_info.R = [0.0]*9
#cam_info.P = [0.0]*12
cam_info.D = D
cam_info.K = K
cam_info.R = R
cam_info.P = P
cam_info.binning_x = 0
cam_info.binning_y = 0
return cam_info
示例2: parse_yaml
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def parse_yaml(filename):
stream = file(filename, 'r')
calib_data = yaml.load(stream)
cam_info = CameraInfo()
cam_info.width = calib_data['image_width']
cam_info.height = calib_data['image_height']
cam_info.K = calib_data['camera_matrix']['data']
cam_info.D = calib_data['distortion_coefficients']['data']
cam_info.R = calib_data['rectification_matrix']['data']
cam_info.P = calib_data['projection_matrix']['data']
cam_info.distortion_model = calib_data['distortion_model']
cam_info.binning_x = calib_data['binning_x']
cam_info.binning_y = calib_data['binning_y']
cam_info.roi.x_offset = calib_data['roi']['x_offset']
cam_info.roi.y_offset = calib_data['roi']['y_offset']
cam_info.roi.height = calib_data['roi']['height']
cam_info.roi.width = calib_data['roi']['width']
cam_info.roi.do_rectify = calib_data['roi']['do_rectify']
return cam_info
示例3: parse_yaml
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def parse_yaml(filename):
stream = file(filename, "r")
calib_data = yaml.load(stream)
cam_info = CameraInfo()
cam_info.width = calib_data["image_width"]
cam_info.height = calib_data["image_height"]
cam_info.K = calib_data["camera_matrix"]["data"]
cam_info.D = calib_data["distortion_coefficients"]["data"]
cam_info.R = calib_data["rectification_matrix"]["data"]
cam_info.P = calib_data["projection_matrix"]["data"]
cam_info.distortion_model = calib_data["distortion_model"]
cam_info.binning_x = calib_data["binning_x"]
cam_info.binning_y = calib_data["binning_y"]
cam_info.roi.x_offset = calib_data["roi"]["x_offset"]
cam_info.roi.y_offset = calib_data["roi"]["y_offset"]
cam_info.roi.height = calib_data["roi"]["height"]
cam_info.roi.width = calib_data["roi"]["width"]
cam_info.roi.do_rectify = calib_data["roi"]["do_rectify"]
return cam_info
示例4: get_camera_info
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def get_camera_info(hard_coded=True):
if hard_coded:
cx = 319.5
cy = 239.5
fx = 525.5
fy = 525.5
return (cx, cy, fx, fy)
#if we are using a different camera, then
#we can listen to the ros camera info topic for that device
#and get our values here.
else:
import image_geometry
from sensor_msgs.msg import CameraInfo
cam_info = CameraInfo()
cam_info.height = 480
cam_info.width = 640
cam_info.distortion_model = "plumb_bob"
cam_info.D = [0.0, 0.0, 0.0, 0.0, 0.0]
cam_info.K = [525.0, 0.0, 319.5, 0.0, 525.0, 239.5, 0.0, 0.0, 1.0]
cam_info.R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
cam_info.P = [525.0, 0.0, 319.5, 0.0, 0.0, 525.0, 239.5, 0.0, 0.0, 0.0, 1.0, 0.0]
cam_info.binning_x = 0
cam_info.binning_y = 0
cam_info.roi.x_offset = 0
cam_info.roi.y_offset = 0
cam_info.roi.height = 0
cam_info.roi.width = 0
cam_info.roi.do_rectify = False
camera_model = image_geometry.PinholeCameraModel()
camera_model.fromCameraInfo(cam_info)
return camera_model.cx(), camera_model.cy(), camera_model.fx(), camera_model.fy()
示例5: run
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def run(self):
img = Image()
r = rospy.Rate(self.config['frame_rate'])
while self.is_looping():
if self.pub_img_.get_num_connections() == 0:
if self.nameId:
rospy.loginfo('Unsubscribing from camera as nobody listens to the topics.')
self.camProxy.unsubscribe(self.nameId)
self.nameId = None
r.sleep()
continue
if self.nameId is None:
self.reconfigure(self.config, 0)
r.sleep()
continue
image = self.camProxy.getImageRemote(self.nameId)
if image is None:
continue
# Deal with the image
if self.config['use_ros_time']:
img.header.stamp = rospy.Time.now()
else:
img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
img.header.frame_id = self.frame_id
img.height = image[1]
img.width = image[0]
nbLayers = image[2]
if image[3] == kYUVColorSpace:
encoding = "mono8"
elif image[3] == kRGBColorSpace:
encoding = "rgb8"
elif image[3] == kBGRColorSpace:
encoding = "bgr8"
elif image[3] == kYUV422ColorSpace:
encoding = "yuv422" # this works only in ROS groovy and later
elif image[3] == kDepthColorSpace:
encoding = "mono16"
else:
rospy.logerr("Received unknown encoding: {0}".format(image[3]))
img.encoding = encoding
img.step = img.width * nbLayers
img.data = image[6]
self.pub_img_.publish(img)
# deal with the camera info
if self.config['source'] == kDepthCamera and image[3] == kDepthColorSpace:
infomsg = CameraInfo()
# yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
ratio_x = float(640)/float(img.width)
ratio_y = float(480)/float(img.height)
infomsg.width = img.width
infomsg.height = img.height
# [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
infomsg.K = [ 525, 0, 3.1950000000000000e+02,
0, 525, 2.3950000000000000e+02,
0, 0, 1 ]
infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
0, 525, 2.3950000000000000e+02, 0,
0, 0, 1, 0 ]
for i in range(3):
infomsg.K[i] = infomsg.K[i] / ratio_x
infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
infomsg.P[i] = infomsg.P[i] / ratio_x
infomsg.P[4+i] = infomsg.P[4+i] / ratio_y
infomsg.D = []
infomsg.binning_x = 0
infomsg.binning_y = 0
infomsg.distortion_model = ""
infomsg.header = img.header
self.pub_info_.publish(infomsg)
elif self.config['camera_info_url'] in self.camera_infos:
infomsg = self.camera_infos[self.config['camera_info_url']]
infomsg.header = img.header
self.pub_info_.publish(infomsg)
r.sleep()
if (self.nameId):
rospy.loginfo("unsubscribing from camera ")
self.camProxy.unsubscribe(self.nameId)
示例6: main_loop
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def main_loop(self):
img = Image()
cimg = Image()
r = rospy.Rate(15)
while not rospy.is_shutdown():
if self.pub_img_.get_num_connections() == 0:
r.sleep()
continue
image = self.camProxy.getImageRemote(self.nameId)
if image is None:
continue
# Deal with the image
'''
#Images received from NAO have
if self.config['use_ros_time']:
img.header.stamp = rospy.Time.now()
else:
img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
'''
img.header.stamp = rospy.Time.now()
img.header.frame_id = self.frame_id
img.height = image[1]
img.width = image[0]
nbLayers = image[2]
if image[3] == kDepthColorSpace:
encoding = "mono16"
else:
rospy.logerr("Received unknown encoding: {0}".format(image[3]))
img.encoding = encoding
img.step = img.width * nbLayers
img.data = image[6]
self.pub_img_.publish(img)
# deal with the camera info
infomsg = CameraInfo()
infomsg.header = img.header
# yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
ratio_x = float(640)/float(img.width)
ratio_y = float(480)/float(img.height)
infomsg.width = img.width
infomsg.height = img.height
# [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
infomsg.K = [ 525, 0, 3.1950000000000000e+02,
0, 525, 2.3950000000000000e+02,
0, 0, 1 ]
infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
0, 525, 2.3950000000000000e+02, 0,
0, 0, 1, 0 ]
for i in range(3):
infomsg.K[i] = infomsg.K[i] / ratio_x
infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
infomsg.P[i] = infomsg.P[i] / ratio_x
infomsg.P[4+i] = infomsg.P[4+i] / ratio_y
infomsg.D = []
infomsg.binning_x = 0
infomsg.binning_y = 0
infomsg.distortion_model = ""
self.pub_info_.publish(infomsg)
#Currently we only get depth image from the 3D camera of NAO, so we make up a fake color image (a black image)
#and publish it under image_color topic.
#This should be update when the color image from 3D camera becomes available.
colorimg = np.zeros((img.height,img.width,3), np.uint8)
try:
cimg = self.bridge.cv2_to_imgmsg(colorimg, "bgr8")
cimg.header.stamp = img.header.stamp
cimg.header.frame_id = img.header.frame_id
self.pub_cimg_.publish(cimg)
except CvBridgeError, e:
print e
r.sleep()
示例7: main
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_y [as 别名]
def main():
parser = argparse.ArgumentParser(
description="Convert an LCM log to a ROS bag (mono/stereo images only).")
parser.add_argument('lcm_file', help='Input LCM log.', action='store')
parser.add_argument('left_img_channel', help='LCM channel for left image.')
parser.add_argument('left_camera_yml',
help='Image calibration YAML file from ROS calibrator')
parser.add_argument('--right_img_channel', help='LCM channel for right image.',
action='append', dest='lcm_channels')
parser.add_argument('--right_camera_yml',
help='Image calibration YAML file from ROS calibrator',
action='append', dest='yml_files')
roi_parser = parser.add_argument_group("Format7/ROI", "Format7/ROI options needed when dealing with non-standard video modes.")
roi_parser.add_argument('--binning_x', default=1, type=int, dest='binning_x', help='Image binning factor.')
roi_parser.add_argument('--binning_y', default=1, type=int, dest='binning_y', help='Image binning factor.')
roi_parser.add_argument('--x_offset', default=0, type=int, dest='x_offset', help="ROI x offset (in UNBINNED pixels)")
roi_parser.add_argument('--y_offset', default=0, type=int, dest='y_offset', help="ROI y offset (in UNBINNED pixels)")
roi_parser.add_argument('--width', default=640, type=int, dest='width', help="ROI width (in UNBINNED pixels)")
roi_parser.add_argument('--height', default=480, type=int, dest='height', help="ROI height (in UNBINNED pixels)")
roi_parser.add_argument('--do_rectify', default=False, type=bool, dest='do_rectify', help="Do rectification when querying ROI.")
args = parser.parse_args()
if args.lcm_channels is None:
args.lcm_channels = []
if args.yml_files is None:
args.yml_files = []
args.lcm_channels.append(args.left_img_channel)
args.yml_files.append(args.left_camera_yml)
if len(args.lcm_channels) != len(args.yml_files):
print "LCM channel-YAML file mismatch!"
print "Converting images in %s to ROS bag file..." % (args.lcm_file)
log = lcm.EventLog(args.lcm_file, 'r')
bag = rosbag.Bag(args.lcm_file + '.images.bag', 'w')
# Read in YAML files.
yml = []
for y in args.yml_files:
yml.append(yaml.load(file(y)))
try:
count = 0
for event in log:
for ii in range(len(args.lcm_channels)):
l = args.lcm_channels[ii]
y = yml[ii]
if event.channel == l:
lcm_msg = image_t.decode(event.data)
# Fill in image.
if lcm_msg.pixelformat != image_t.PIXEL_FORMAT_MJPEG:
print "Encountered non-MJPEG compressed image. Skipping..."
continue
ros_msg = CompressedImage()
ros_msg.header.seq = event.eventnum
secs_float = float(lcm_msg.utime)/1e6
nsecs_float = (secs_float - np.floor(secs_float)) * 1e9
ros_msg.header.stamp.secs = np.uint32(np.floor(secs_float))
ros_msg.header.stamp.nsecs = np.uint32(np.floor(nsecs_float))
ros_msg.header.frame_id = "camera"
ros_msg.format = 'jpeg'
ros_msg.data = lcm_msg.data
# Fill in camera info
camera_info = CameraInfo()
camera_info.header = ros_msg.header
camera_info.height = y['image_height']
camera_info.width = y['image_width']
if y["distortion_model"] != "plumb_bob":
print "Encountered non-supported distorion model %s. Skipping..." % y["distortion_model"]
continue
camera_info.distortion_model = y["distortion_model"]
camera_info.D = y["distortion_coefficients"]['data']
camera_info.K = y["camera_matrix"]['data']
camera_info.R = y["rectification_matrix"]['data']
camera_info.P = y["projection_matrix"]['data']
camera_info.binning_x = args.binning_x
camera_info.binning_y = args.binning_y
camera_info.roi.x_offset = args.x_offset
camera_info.roi.y_offset = args.y_offset
camera_info.roi.height = args.height
camera_info.roi.width = args.width
camera_info.roi.do_rectify = args.do_rectify
bag.write("/camera/" + l + "/image_raw/compressed", ros_msg, ros_msg.header.stamp)
bag.write("/camera/" + l + "/camera_info", camera_info, camera_info.header.stamp)
count += 1
#.........这里部分代码省略.........