本文整理汇总了Python中sensor_msgs.msg.CameraInfo.K[3+i]方法的典型用法代码示例。如果您正苦于以下问题:Python CameraInfo.K[3+i]方法的具体用法?Python CameraInfo.K[3+i]怎么用?Python CameraInfo.K[3+i]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sensor_msgs.msg.CameraInfo
的用法示例。
在下文中一共展示了CameraInfo.K[3+i]方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import K[3+i] [as 别名]
def run(self):
img = Image()
r = rospy.Rate(self.config['frame_rate'])
while self.is_looping():
if self.pub_img_.get_num_connections() == 0:
if self.nameId:
rospy.loginfo('Unsubscribing from camera as nobody listens to the topics.')
self.camProxy.unsubscribe(self.nameId)
self.nameId = None
r.sleep()
continue
if self.nameId is None:
self.reconfigure(self.config, 0)
r.sleep()
continue
image = self.camProxy.getImageRemote(self.nameId)
if image is None:
continue
# Deal with the image
if self.config['use_ros_time']:
img.header.stamp = rospy.Time.now()
else:
img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
img.header.frame_id = self.frame_id
img.height = image[1]
img.width = image[0]
nbLayers = image[2]
if image[3] == kYUVColorSpace:
encoding = "mono8"
elif image[3] == kRGBColorSpace:
encoding = "rgb8"
elif image[3] == kBGRColorSpace:
encoding = "bgr8"
elif image[3] == kYUV422ColorSpace:
encoding = "yuv422" # this works only in ROS groovy and later
elif image[3] == kDepthColorSpace:
encoding = "mono16"
else:
rospy.logerr("Received unknown encoding: {0}".format(image[3]))
img.encoding = encoding
img.step = img.width * nbLayers
img.data = image[6]
self.pub_img_.publish(img)
# deal with the camera info
if self.config['source'] == kDepthCamera and image[3] == kDepthColorSpace:
infomsg = CameraInfo()
# yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
ratio_x = float(640)/float(img.width)
ratio_y = float(480)/float(img.height)
infomsg.width = img.width
infomsg.height = img.height
# [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
infomsg.K = [ 525, 0, 3.1950000000000000e+02,
0, 525, 2.3950000000000000e+02,
0, 0, 1 ]
infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
0, 525, 2.3950000000000000e+02, 0,
0, 0, 1, 0 ]
for i in range(3):
infomsg.K[i] = infomsg.K[i] / ratio_x
infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
infomsg.P[i] = infomsg.P[i] / ratio_x
infomsg.P[4+i] = infomsg.P[4+i] / ratio_y
infomsg.D = []
infomsg.binning_x = 0
infomsg.binning_y = 0
infomsg.distortion_model = ""
infomsg.header = img.header
self.pub_info_.publish(infomsg)
elif self.config['camera_info_url'] in self.camera_infos:
infomsg = self.camera_infos[self.config['camera_info_url']]
infomsg.header = img.header
self.pub_info_.publish(infomsg)
r.sleep()
if (self.nameId):
rospy.loginfo("unsubscribing from camera ")
self.camProxy.unsubscribe(self.nameId)
示例2: main_loop
# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import K[3+i] [as 别名]
def main_loop(self):
img = Image()
cimg = Image()
r = rospy.Rate(15)
while not rospy.is_shutdown():
if self.pub_img_.get_num_connections() == 0:
r.sleep()
continue
image = self.camProxy.getImageRemote(self.nameId)
if image is None:
continue
# Deal with the image
'''
#Images received from NAO have
if self.config['use_ros_time']:
img.header.stamp = rospy.Time.now()
else:
img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
'''
img.header.stamp = rospy.Time.now()
img.header.frame_id = self.frame_id
img.height = image[1]
img.width = image[0]
nbLayers = image[2]
if image[3] == kDepthColorSpace:
encoding = "mono16"
else:
rospy.logerr("Received unknown encoding: {0}".format(image[3]))
img.encoding = encoding
img.step = img.width * nbLayers
img.data = image[6]
self.pub_img_.publish(img)
# deal with the camera info
infomsg = CameraInfo()
infomsg.header = img.header
# yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
ratio_x = float(640)/float(img.width)
ratio_y = float(480)/float(img.height)
infomsg.width = img.width
infomsg.height = img.height
# [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
infomsg.K = [ 525, 0, 3.1950000000000000e+02,
0, 525, 2.3950000000000000e+02,
0, 0, 1 ]
infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
0, 525, 2.3950000000000000e+02, 0,
0, 0, 1, 0 ]
for i in range(3):
infomsg.K[i] = infomsg.K[i] / ratio_x
infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
infomsg.P[i] = infomsg.P[i] / ratio_x
infomsg.P[4+i] = infomsg.P[4+i] / ratio_y
infomsg.D = []
infomsg.binning_x = 0
infomsg.binning_y = 0
infomsg.distortion_model = ""
self.pub_info_.publish(infomsg)
#Currently we only get depth image from the 3D camera of NAO, so we make up a fake color image (a black image)
#and publish it under image_color topic.
#This should be update when the color image from 3D camera becomes available.
colorimg = np.zeros((img.height,img.width,3), np.uint8)
try:
cimg = self.bridge.cv2_to_imgmsg(colorimg, "bgr8")
cimg.header.stamp = img.header.stamp
cimg.header.frame_id = img.header.frame_id
self.pub_cimg_.publish(cimg)
except CvBridgeError, e:
print e
r.sleep()