当前位置: 首页>>代码示例>>Python>>正文


Python CameraInfo.binning_x方法代码示例

本文整理汇总了Python中sensor_msgs.msg.CameraInfo.binning_x方法的典型用法代码示例。如果您正苦于以下问题:Python CameraInfo.binning_x方法的具体用法?Python CameraInfo.binning_x怎么用?Python CameraInfo.binning_x使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sensor_msgs.msg.CameraInfo的用法示例。


在下文中一共展示了CameraInfo.binning_x方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GetCameraInfo

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
def GetCameraInfo(width, height):
	cam_info = CameraInfo()
	cam_info.width = width
	cam_info.height = height
	cam_info.distortion_model = model
	#cam_info.D = [0.0]*5
	#cam_info.K = [0.0]*9
	#cam_info.R = [0.0]*9
	#cam_info.P = [0.0]*12
	cam_info.D = D
        cam_info.K = K
        cam_info.R = R
        cam_info.P = P
	cam_info.binning_x = 0
	cam_info.binning_y = 0
	return cam_info
开发者ID:jpiat,项目名称:ros_picam,代码行数:18,代码来源:SequenceToBag.py

示例2: parse_yaml

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
def parse_yaml(filename):
    stream = file(filename, 'r')
    calib_data = yaml.load(stream)
    cam_info = CameraInfo()
    cam_info.width = calib_data['image_width']
    cam_info.height = calib_data['image_height']
    cam_info.K = calib_data['camera_matrix']['data']
    cam_info.D = calib_data['distortion_coefficients']['data']
    cam_info.R = calib_data['rectification_matrix']['data']
    cam_info.P = calib_data['projection_matrix']['data']
    cam_info.distortion_model = calib_data['distortion_model']
    cam_info.binning_x = calib_data['binning_x']
    cam_info.binning_y = calib_data['binning_y']
    cam_info.roi.x_offset = calib_data['roi']['x_offset']
    cam_info.roi.y_offset = calib_data['roi']['y_offset']
    cam_info.roi.height = calib_data['roi']['height']
    cam_info.roi.width = calib_data['roi']['width']
    cam_info.roi.do_rectify = calib_data['roi']['do_rectify']
    
    return cam_info
开发者ID:turgaysenlet,项目名称:carry,代码行数:22,代码来源:camera_info_publisher_small.py

示例3: parse_yaml

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
def parse_yaml(filename):
    stream = file(filename, "r")
    calib_data = yaml.load(stream)
    cam_info = CameraInfo()
    cam_info.width = calib_data["image_width"]
    cam_info.height = calib_data["image_height"]
    cam_info.K = calib_data["camera_matrix"]["data"]
    cam_info.D = calib_data["distortion_coefficients"]["data"]
    cam_info.R = calib_data["rectification_matrix"]["data"]
    cam_info.P = calib_data["projection_matrix"]["data"]
    cam_info.distortion_model = calib_data["distortion_model"]
    cam_info.binning_x = calib_data["binning_x"]
    cam_info.binning_y = calib_data["binning_y"]
    cam_info.roi.x_offset = calib_data["roi"]["x_offset"]
    cam_info.roi.y_offset = calib_data["roi"]["y_offset"]
    cam_info.roi.height = calib_data["roi"]["height"]
    cam_info.roi.width = calib_data["roi"]["width"]
    cam_info.roi.do_rectify = calib_data["roi"]["do_rectify"]

    return cam_info
开发者ID:turgaysenlet,项目名称:carry,代码行数:22,代码来源:camera_info_publisher_large.py

示例4: get_camera_info

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
def get_camera_info(hard_coded=True):

    if hard_coded:
        cx = 319.5
        cy = 239.5
        fx = 525.5
        fy = 525.5

        return (cx, cy, fx, fy)

    #if we are using a different camera, then
    #we can listen to the ros camera info topic for that device
    #and get our values here.
    else:

        import image_geometry
        from sensor_msgs.msg import CameraInfo

        cam_info = CameraInfo()

        cam_info.height = 480
        cam_info.width = 640
        cam_info.distortion_model = "plumb_bob"
        cam_info.D = [0.0, 0.0, 0.0, 0.0, 0.0]
        cam_info.K = [525.0, 0.0, 319.5, 0.0, 525.0, 239.5, 0.0, 0.0, 1.0]
        cam_info.R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
        cam_info.P = [525.0, 0.0, 319.5, 0.0, 0.0, 525.0, 239.5, 0.0, 0.0, 0.0, 1.0, 0.0]
        cam_info.binning_x = 0
        cam_info.binning_y = 0
        cam_info.roi.x_offset = 0
        cam_info.roi.y_offset = 0
        cam_info.roi.height = 0
        cam_info.roi.width = 0
        cam_info.roi.do_rectify = False

        camera_model = image_geometry.PinholeCameraModel()
        camera_model.fromCameraInfo(cam_info)

        return camera_model.cx(), camera_model.cy(), camera_model.fx(), camera_model.fy()
开发者ID:ShapeCompletion3D,项目名称:keras,代码行数:41,代码来源:point_cloud_hdf5_dataset.py

示例5: run

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
    def run(self):
        img = Image()
        r = rospy.Rate(self.config['frame_rate'])
        while self.is_looping():
            if self.pub_img_.get_num_connections() == 0:
                if self.nameId:
                    rospy.loginfo('Unsubscribing from camera as nobody listens to the topics.')
                    self.camProxy.unsubscribe(self.nameId)
                    self.nameId = None
                r.sleep()
                continue
            if self.nameId is None:
                self.reconfigure(self.config, 0)
                r.sleep()
                continue
            image = self.camProxy.getImageRemote(self.nameId)
            if image is None:
                continue
            # Deal with the image
            if self.config['use_ros_time']:
                img.header.stamp = rospy.Time.now()
            else:
                img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            elif image[3] == kYUV422ColorSpace:
                encoding = "yuv422" # this works only in ROS groovy and later
            elif image[3] == kDepthColorSpace:
                encoding = "mono16"
            else:
                rospy.logerr("Received unknown encoding: {0}".format(image[3]))
            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]

            self.pub_img_.publish(img)

            # deal with the camera info
            if self.config['source'] == kDepthCamera and image[3] == kDepthColorSpace:
                infomsg = CameraInfo()
                # yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
                ratio_x = float(640)/float(img.width)
                ratio_y = float(480)/float(img.height)
                infomsg.width = img.width
                infomsg.height = img.height
                # [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
                infomsg.K = [ 525, 0, 3.1950000000000000e+02,
                              0, 525, 2.3950000000000000e+02,
                              0, 0, 1 ]
                infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
                              0, 525, 2.3950000000000000e+02, 0,
                              0, 0, 1, 0 ]
                for i in range(3):
                    infomsg.K[i] = infomsg.K[i] / ratio_x
                    infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
                    infomsg.P[i] = infomsg.P[i] / ratio_x
                    infomsg.P[4+i] = infomsg.P[4+i] / ratio_y

                infomsg.D = []
                infomsg.binning_x = 0
                infomsg.binning_y = 0
                infomsg.distortion_model = ""

                infomsg.header = img.header
                self.pub_info_.publish(infomsg)
            elif self.config['camera_info_url'] in self.camera_infos:
                infomsg = self.camera_infos[self.config['camera_info_url']]

                infomsg.header = img.header
                self.pub_info_.publish(infomsg)

            r.sleep()

        if (self.nameId):
            rospy.loginfo("unsubscribing from camera ")
            self.camProxy.unsubscribe(self.nameId)
开发者ID:laurent-george,项目名称:nao_sensors,代码行数:86,代码来源:camera.py

示例6: main_loop

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
    def main_loop(self):
        img = Image()
        cimg = Image()
        r = rospy.Rate(15)
        while not rospy.is_shutdown():
            if self.pub_img_.get_num_connections() == 0:
                r.sleep()
                continue

            image = self.camProxy.getImageRemote(self.nameId)
            if image is None:
                continue
            # Deal with the image
            '''
            #Images received from NAO have
            if self.config['use_ros_time']:
                img.header.stamp = rospy.Time.now()
            else:
                img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
            '''
            img.header.stamp = rospy.Time.now()
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            if image[3] == kDepthColorSpace:
                encoding = "mono16"
            else:
                rospy.logerr("Received unknown encoding: {0}".format(image[3]))
            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]

            self.pub_img_.publish(img)
            
            # deal with the camera info
            infomsg = CameraInfo()
            infomsg.header = img.header
            # yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
            ratio_x = float(640)/float(img.width)
            ratio_y = float(480)/float(img.height)
            infomsg.width = img.width
            infomsg.height = img.height
            # [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
            infomsg.K = [ 525, 0, 3.1950000000000000e+02,
                         0, 525, 2.3950000000000000e+02,
                         0, 0, 1 ]
            infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
                         0, 525, 2.3950000000000000e+02, 0,
                         0, 0, 1, 0 ]

            for i in range(3):
                infomsg.K[i] = infomsg.K[i] / ratio_x
                infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
                infomsg.P[i] = infomsg.P[i] / ratio_x
                infomsg.P[4+i] = infomsg.P[4+i] / ratio_y

            infomsg.D = []
            infomsg.binning_x = 0
            infomsg.binning_y = 0
            infomsg.distortion_model = ""
            self.pub_info_.publish(infomsg)

	    #Currently we only get depth image from the 3D camera of NAO, so we make up a fake color image (a black image)
            #and publish it under image_color topic.
            #This should be update when the color image from 3D camera becomes available.
            colorimg = np.zeros((img.height,img.width,3), np.uint8)
            try:
              cimg = self.bridge.cv2_to_imgmsg(colorimg, "bgr8")
              cimg.header.stamp = img.header.stamp
              cimg.header.frame_id = img.header.frame_id
              self.pub_cimg_.publish(cimg)
            except CvBridgeError, e:
              print e

            r.sleep()
开发者ID:cottsay,项目名称:romeo_robot,代码行数:78,代码来源:camera_depth.py

示例7: main

# 需要导入模块: from sensor_msgs.msg import CameraInfo [as 别名]
# 或者: from sensor_msgs.msg.CameraInfo import binning_x [as 别名]
def main():
    parser = argparse.ArgumentParser(
        description="Convert an LCM log to a ROS bag (mono/stereo images only).")
    parser.add_argument('lcm_file', help='Input LCM log.', action='store')
    parser.add_argument('left_img_channel', help='LCM channel for left image.')
    parser.add_argument('left_camera_yml',
                        help='Image calibration YAML file from ROS calibrator')
    parser.add_argument('--right_img_channel', help='LCM channel for right image.',
                        action='append', dest='lcm_channels')
    parser.add_argument('--right_camera_yml',
                        help='Image calibration YAML file from ROS calibrator',
                        action='append', dest='yml_files')

    roi_parser = parser.add_argument_group("Format7/ROI", "Format7/ROI options needed when dealing with non-standard video modes.")
    roi_parser.add_argument('--binning_x', default=1, type=int, dest='binning_x', help='Image binning factor.')
    roi_parser.add_argument('--binning_y', default=1, type=int, dest='binning_y', help='Image binning factor.')
    roi_parser.add_argument('--x_offset', default=0, type=int, dest='x_offset', help="ROI x offset (in UNBINNED pixels)")
    roi_parser.add_argument('--y_offset', default=0, type=int, dest='y_offset', help="ROI y offset (in UNBINNED pixels)")
    roi_parser.add_argument('--width', default=640, type=int, dest='width', help="ROI width (in UNBINNED pixels)")
    roi_parser.add_argument('--height', default=480, type=int, dest='height', help="ROI height (in UNBINNED pixels)")
    roi_parser.add_argument('--do_rectify', default=False, type=bool, dest='do_rectify', help="Do rectification when querying ROI.")
    args = parser.parse_args()

    if args.lcm_channels is None:
        args.lcm_channels = []
    if args.yml_files is None:
        args.yml_files = []

    args.lcm_channels.append(args.left_img_channel)
    args.yml_files.append(args.left_camera_yml)

    if len(args.lcm_channels) != len(args.yml_files):
        print "LCM channel-YAML file mismatch!"

    print "Converting images in %s to ROS bag file..." % (args.lcm_file)

    log = lcm.EventLog(args.lcm_file, 'r')
    bag = rosbag.Bag(args.lcm_file + '.images.bag', 'w')

    # Read in YAML files.
    yml = []
    for y in args.yml_files:
        yml.append(yaml.load(file(y)))

    try:
        count = 0
        for event in log:
            for ii in range(len(args.lcm_channels)):
                l = args.lcm_channels[ii]
                y = yml[ii]

                if event.channel == l:
                    lcm_msg = image_t.decode(event.data)

                    # Fill in image.
                    if lcm_msg.pixelformat != image_t.PIXEL_FORMAT_MJPEG:
                        print "Encountered non-MJPEG compressed image. Skipping..."
                        continue

                    ros_msg = CompressedImage()
                    ros_msg.header.seq = event.eventnum

                    secs_float = float(lcm_msg.utime)/1e6
                    nsecs_float = (secs_float - np.floor(secs_float)) * 1e9
                    ros_msg.header.stamp.secs = np.uint32(np.floor(secs_float))
                    ros_msg.header.stamp.nsecs = np.uint32(np.floor(nsecs_float))
                    ros_msg.header.frame_id = "camera"

                    ros_msg.format = 'jpeg'

                    ros_msg.data = lcm_msg.data

                    # Fill in camera info
                    camera_info = CameraInfo()
                    camera_info.header = ros_msg.header
                    camera_info.height = y['image_height']
                    camera_info.width = y['image_width']

                    if y["distortion_model"] != "plumb_bob":
                        print "Encountered non-supported distorion model %s. Skipping..." % y["distortion_model"]
                        continue

                    camera_info.distortion_model = y["distortion_model"]
                    camera_info.D = y["distortion_coefficients"]['data']
                    camera_info.K = y["camera_matrix"]['data']
                    camera_info.R = y["rectification_matrix"]['data']
                    camera_info.P = y["projection_matrix"]['data']
                    camera_info.binning_x = args.binning_x
                    camera_info.binning_y = args.binning_y
                    camera_info.roi.x_offset = args.x_offset
                    camera_info.roi.y_offset = args.y_offset
                    camera_info.roi.height = args.height
                    camera_info.roi.width = args.width
                    camera_info.roi.do_rectify = args.do_rectify

                    bag.write("/camera/" + l + "/image_raw/compressed", ros_msg, ros_msg.header.stamp)
                    bag.write("/camera/" + l + "/camera_info", camera_info, camera_info.header.stamp)

                    count += 1

#.........这里部分代码省略.........
开发者ID:wngreene,项目名称:python_utils,代码行数:103,代码来源:lcmlog_to_rosbag_image.py


注:本文中的sensor_msgs.msg.CameraInfo.binning_x方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。