当前位置: 首页>>代码示例>>Python>>正文


Python TensorFlow.delete_endpoint方法代码示例

本文整理汇总了Python中sagemaker.tensorflow.TensorFlow.delete_endpoint方法的典型用法代码示例。如果您正苦于以下问题:Python TensorFlow.delete_endpoint方法的具体用法?Python TensorFlow.delete_endpoint怎么用?Python TensorFlow.delete_endpoint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sagemaker.tensorflow.TensorFlow的用法示例。


在下文中一共展示了TensorFlow.delete_endpoint方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_tf_local_mode

# 需要导入模块: from sagemaker.tensorflow import TensorFlow [as 别名]
# 或者: from sagemaker.tensorflow.TensorFlow import delete_endpoint [as 别名]
def test_tf_local_mode(tf_full_version, sagemaker_local_session):
    local_mode_lock_fd = open(LOCK_PATH, 'w')
    local_mode_lock = local_mode_lock_fd.fileno()
    with timeout(minutes=5):
        script_path = os.path.join(DATA_DIR, 'iris', 'iris-dnn-classifier.py')

        estimator = TensorFlow(entry_point=script_path,
                               role='SageMakerRole',
                               framework_version=tf_full_version,
                               training_steps=1,
                               evaluation_steps=1,
                               hyperparameters={'input_tensor_name': 'inputs'},
                               train_instance_count=1,
                               train_instance_type='local',
                               base_job_name='test-tf',
                               sagemaker_session=sagemaker_local_session)

        inputs = estimator.sagemaker_session.upload_data(path=DATA_PATH,
                                                         key_prefix='integ-test-data/tf_iris')
        estimator.fit(inputs)
        print('job succeeded: {}'.format(estimator.latest_training_job.name))

    endpoint_name = estimator.latest_training_job.name
    try:
        # Since Local Mode uses the same port for serving, we need a lock in order
        # to allow concurrent test execution. The serving test is really fast so it still
        # makes sense to allow this behavior.
        fcntl.lockf(local_mode_lock, fcntl.LOCK_EX)
        json_predictor = estimator.deploy(initial_instance_count=1,
                                          instance_type='local',
                                          endpoint_name=endpoint_name)

        features = [6.4, 3.2, 4.5, 1.5]
        dict_result = json_predictor.predict({'inputs': features})
        print('predict result: {}'.format(dict_result))
        list_result = json_predictor.predict(features)
        print('predict result: {}'.format(list_result))

        assert dict_result == list_result
    finally:
        estimator.delete_endpoint()
        time.sleep(5)
        fcntl.lockf(local_mode_lock, fcntl.LOCK_UN)
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:45,代码来源:test_local_mode.py


注:本文中的sagemaker.tensorflow.TensorFlow.delete_endpoint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。