当前位置: 首页>>代码示例>>Python>>正文


Python TensorFlow.attach方法代码示例

本文整理汇总了Python中sagemaker.tensorflow.TensorFlow.attach方法的典型用法代码示例。如果您正苦于以下问题:Python TensorFlow.attach方法的具体用法?Python TensorFlow.attach怎么用?Python TensorFlow.attach使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sagemaker.tensorflow.TensorFlow的用法示例。


在下文中一共展示了TensorFlow.attach方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_tf_async

# 需要导入模块: from sagemaker.tensorflow import TensorFlow [as 别名]
# 或者: from sagemaker.tensorflow.TensorFlow import attach [as 别名]
def test_tf_async(sagemaker_session):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, 'iris', 'iris-dnn-classifier.py')

        estimator = TensorFlow(entry_point=script_path,
                               role='SageMakerRole',
                               training_steps=1,
                               evaluation_steps=1,
                               hyperparameters={'input_tensor_name': 'inputs'},
                               train_instance_count=1,
                               train_instance_type='ml.c4.xlarge',
                               sagemaker_session=sagemaker_session,
                               base_job_name='test-tf')

        inputs = estimator.sagemaker_session.upload_data(path=DATA_PATH, key_prefix='integ-test-data/tf_iris')
        estimator.fit(inputs, wait=False)
        training_job_name = estimator.latest_training_job.name
        time.sleep(20)

    endpoint_name = training_job_name
    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = TensorFlow.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
        json_predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
                                          endpoint_name=endpoint_name)

        result = json_predictor.predict([6.4, 3.2, 4.5, 1.5])
        print('predict result: {}'.format(result))
开发者ID:cheesama,项目名称:sagemaker-python-sdk,代码行数:29,代码来源:test_tf.py

示例2: test_attach_custom_image

# 需要导入模块: from sagemaker.tensorflow import TensorFlow [as 别名]
# 或者: from sagemaker.tensorflow.TensorFlow import attach [as 别名]
def test_attach_custom_image(sagemaker_session):
    training_image = '1.dkr.ecr.us-west-2.amazonaws.com/tensorflow_with_custom_binary:1.0'
    rjd = {
        'AlgorithmSpecification': {
            'TrainingInputMode': 'File',
            'TrainingImage': training_image},
        'HyperParameters': {
            'sagemaker_submit_directory': '"s3://some/sourcedir.tar.gz"',
            'checkpoint_path': '"s3://other/1508872349"',
            'sagemaker_program': '"iris-dnn-classifier.py"',
            'sagemaker_enable_cloudwatch_metrics': 'false',
            'sagemaker_container_log_level': '"logging.INFO"',
            'sagemaker_job_name': '"neo"',
            'training_steps': '100',
            'evaluation_steps': '10'},
        'RoleArn': 'arn:aws:iam::366:role/SageMakerRole',
        'ResourceConfig': {
            'VolumeSizeInGB': 30,
            'InstanceCount': 1,
            'InstanceType': 'ml.c4.xlarge'},
        'StoppingCondition': {'MaxRuntimeInSeconds': 24 * 60 * 60},
        'TrainingJobName': 'neo',
        'TrainingJobStatus': 'Completed',
        'OutputDataConfig': {'KmsKeyId': '', 'S3OutputPath': 's3://place/output/neo'},
        'TrainingJobOutput': {'S3TrainingJobOutput': 's3://here/output.tar.gz'}}
    sagemaker_session.sagemaker_client.describe_training_job = Mock(name='describe_training_job', return_value=rjd)

    estimator = TensorFlow.attach(training_job_name='neo', sagemaker_session=sagemaker_session)
    assert estimator.image_name == training_image
    assert estimator.train_image() == training_image
开发者ID:jenniew,项目名称:sagemaker-python-sdk,代码行数:32,代码来源:test_tf_estimator.py

示例3: test_attach_wrong_framework

# 需要导入模块: from sagemaker.tensorflow import TensorFlow [as 别名]
# 或者: from sagemaker.tensorflow.TensorFlow import attach [as 别名]
def test_attach_wrong_framework(sagemaker_session):
    returned_job_description = {
        'AlgorithmSpecification': {
            'TrainingInputMode': 'File',
            'TrainingImage': '1.dkr.ecr.us-west-2.amazonaws.com/sagemaker-mxnet-py2-cpu:1.0'
        },
        'HyperParameters': {
            'sagemaker_submit_directory': '"s3://some/sourcedir.tar.gz"',
            'sagemaker_program': '"iris-dnn-classifier.py"',
            'sagemaker_enable_cloudwatch_metrics': 'false',
            'sagemaker_container_log_level': '"logging.INFO"',
            'training_steps': '100'

        },
        'RoleArn': 'arn:aws:iam::366:role/SageMakerRole',
        'ResourceConfig':
            {'VolumeSizeInGB': 30,
             'InstanceCount': 1,
             'InstanceType': 'ml.c4.xlarge'
             },
        'StoppingCondition': {
            'MaxRuntimeInSeconds': 24 * 60 * 60
        },
        'TrainingJobName': 'neo',
        'TrainingJobStatus': 'Completed',
        'OutputDataConfig': {
            'KmsKeyId': '',
            'S3OutputPath': 's3://place/output/neo'
        },
        'TrainingJobOutput': {
            'S3TrainingJobOutput': 's3://here/output.tar.gz'
        }
    }
    sagemaker_session.sagemaker_client.describe_training_job = Mock(name='describe_training_job',
                                                                    return_value=returned_job_description)

    with pytest.raises(ValueError) as error:
        TensorFlow.attach(training_job_name='neo', sagemaker_session=sagemaker_session)
    assert "didn't use image for requested framework" in str(error)
开发者ID:jenniew,项目名称:sagemaker-python-sdk,代码行数:41,代码来源:test_tf_estimator.py

示例4: test_attach

# 需要导入模块: from sagemaker.tensorflow import TensorFlow [as 别名]
# 或者: from sagemaker.tensorflow.TensorFlow import attach [as 别名]
def test_attach(sagemaker_session, tf_version):
    training_image = '1.dkr.ecr.us-west-2.amazonaws.com/sagemaker-tensorflow-py2-cpu:{}-cpu-py2'.format(tf_version)
    rjd = {
        'AlgorithmSpecification': {
            'TrainingInputMode': 'File',
            'TrainingImage': training_image
        },
        'HyperParameters': {
            'sagemaker_submit_directory': '"s3://some/sourcedir.tar.gz"',
            'checkpoint_path': '"s3://other/1508872349"',
            'sagemaker_program': '"iris-dnn-classifier.py"',
            'sagemaker_enable_cloudwatch_metrics': 'false',
            'sagemaker_container_log_level': '"logging.INFO"',
            'sagemaker_job_name': '"neo"',
            'training_steps': '100',
            'evaluation_steps': '10'
        },
        'RoleArn': 'arn:aws:iam::366:role/SageMakerRole',
        'ResourceConfig': {
            'VolumeSizeInGB': 30,
            'InstanceCount': 1,
            'InstanceType': 'ml.c4.xlarge'
        },
        'StoppingCondition': {'MaxRuntimeInSeconds': 24 * 60 * 60},
        'TrainingJobName': 'neo',
        'TrainingJobStatus': 'Completed',
        'OutputDataConfig': {'KmsKeyId': '', 'S3OutputPath': 's3://place/output/neo'},
        'TrainingJobOutput': {'S3TrainingJobOutput': 's3://here/output.tar.gz'}}
    sagemaker_session.sagemaker_client.describe_training_job = Mock(name='describe_training_job', return_value=rjd)

    estimator = TensorFlow.attach(training_job_name='neo', sagemaker_session=sagemaker_session)
    assert estimator.latest_training_job.job_name == 'neo'
    assert estimator.py_version == 'py2'
    assert estimator.framework_version == tf_version
    assert estimator.role == 'arn:aws:iam::366:role/SageMakerRole'
    assert estimator.train_instance_count == 1
    assert estimator.train_max_run == 24 * 60 * 60
    assert estimator.input_mode == 'File'
    assert estimator.training_steps == 100
    assert estimator.evaluation_steps == 10
    assert estimator.input_mode == 'File'
    assert estimator.base_job_name == 'neo'
    assert estimator.output_path == 's3://place/output/neo'
    assert estimator.output_kms_key == ''
    assert estimator.hyperparameters()['training_steps'] == '100'
    assert estimator.source_dir == 's3://some/sourcedir.tar.gz'
    assert estimator.entry_point == 'iris-dnn-classifier.py'
    assert estimator.checkpoint_path == 's3://other/1508872349'
开发者ID:jenniew,项目名称:sagemaker-python-sdk,代码行数:50,代码来源:test_tf_estimator.py


注:本文中的sagemaker.tensorflow.TensorFlow.attach方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。